• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Yifan, LI Dayong, ZHANG Yukun. Effects of grain size distribution and surface texture on shear behaviors at saturated sand-steel interface[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 335-344. DOI: 10.11779/CJGE20221302
Citation: LI Yifan, LI Dayong, ZHANG Yukun. Effects of grain size distribution and surface texture on shear behaviors at saturated sand-steel interface[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 335-344. DOI: 10.11779/CJGE20221302

Effects of grain size distribution and surface texture on shear behaviors at saturated sand-steel interface

More Information
  • Received Date: October 25, 2022
  • Available Online: February 05, 2024
  • The steel piles and steel suction caissons are widely used in ocean engineering, in which the mechanical behaviors of the interface between soils and foundations determine their bearing capacities. A series of saturated sand–steel interface drained shear tests are conducted to reveal the effects of the grain size distribution, surface texture and normal confinement conditions on interfacial shear behaviors. The research shows that due to the differences in the shear mode of sand particles and the dissipation of the pore water pressure, the shear stress-displacement curve under a constant normal load (CNL) experiences an obvious strain-softening phenomenon, whereas the maximum shear stress increases with the increase of the normal stress increment under a variable normal load (VNL). For the smooth and convex surfaces, the interfacial friction angle increases linearly with the increase of Cu. For the groove surfaces, the interfacial friction angle decreases with the increase of Cu. The shear efficiency of the saturated sand-steel plate interface is greatly influenced by water, and the presence of the water film weakens the friction between sand particles and steel plates, thus, the maximum efficiency cannot be developed on interfaces.
  • [1]
    CANAKCI H, HAMED M, CELIK F, et al. Friction characteristics of organic soil with construction materials[J]. Soils and Foundations, 2016, 56(6): 965-972. doi: 10.1016/j.sandf.2016.11.002
    [2]
    FARHADI B, LASHKARI A. Influence of soil inherent anisotropy on behavior of crushed sand-steel interfaces[J]. Soils and Foundations, 2017, 57(1): 111-125. doi: 10.1016/j.sandf.2017.01.008
    [3]
    李大勇, 侯新宇, 张雨坤, 等. 相对密实度对沉贯中吸力基础桶壁-砂土界面力学特性的影响[J]. 岩土工程学报, 2022, 44(9): 1598-1607. doi: 10.11779/CJGE202209004

    LI Dayong, HOU Xinyu, ZHANG Yukun, et al. Effects of relative densities on mechanical characteristics of interface between sand and suction caisson during penetration[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1598-1607. (in Chinese) doi: 10.11779/CJGE202209004
    [4]
    VAFAEI N, FAKHARIAN K, SADREKARIMI A. Sand-sand and sand-steel interface grain-scale behavior under shearing[J]. Transportation Geotechnics, 2021, 30: 100636. doi: 10.1016/j.trgeo.2021.100636
    [5]
    PORCINO D, FIORAVANTE V, GHIONNA V, et al. Interface behavior of sands from constant normal stiffness direct shear tests[J]. Geotechnical Testing Journal, 2003, 26(3): 289-301.
    [6]
    WANG J F, LIU S, CHENG Y P. Role of normal boundary condition in interface shear test for the determination of skin friction along pile shaft[J]. Canadian Geotechnical Journal, 2017, 54(9): 1245-1256. doi: 10.1139/cgj-2016-0312
    [7]
    NARDELLI A, CACCIARI P P, FUTAI M M. Sand-concrete interface response: the role of surface texture and confinement conditions[J]. Soils and Foundations, 2019, 59(6): 1675-1694. doi: 10.1016/j.sandf.2019.05.013
    [8]
    AFZALI-NEJAD A, LASHKARI A, MARTINEZ A. Stress-displacement response of sand–geosynthetic interfaces under different volume change boundary conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(8): 04021062. doi: 10.1061/(ASCE)GT.1943-5606.0002544
    [9]
    HAMMOUD F, BOUMEKIK A. Experimental study of the behaviour of interfacial shearing between cohesive soils and solid materials at large displacement[J]. Asian Journal of Civil Engineering, 2006, 71(1): 63-80.
    [10]
    SAMANTA M, PUNETHA P, SHARMA M. Effect of roughness on interface shear behavior of sand with steel and concrete surface[J]. Geomechanics and Engineering, 2018, 14(4): 387-398.
    [11]
    HAN F, GANJU E S, SALGADO R, et al. Effects of interface roughness, particle geometry, and gradation on the sand–steel interface friction angle[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(12): 04018096. doi: 10.1061/(ASCE)GT.1943-5606.0001990
    [12]
    刘飞禹, 王攀, 王军, 等. 颗粒粒径对格栅-土界面静、动力直剪特性的影响[J]. 岩土力学, 2017, 38(1): 150-156.

    LIU Feiyu, WANG Pan, WANG Jun, et al. Influence of soil particle size on monotonic and cyclic direct shear behaviors of geogrid-soil interface[J]. Rock and Soil Mechanics, 2017, 38(1): 150-156. (in Chinese)
    [13]
    王军, 施静, 刘飞禹, 等. 砂土颗粒级配对格栅-土界面静、动力直剪特性的影响[J]. 岩土力学, 2019, 40(1): 109-117.

    WANG Jun, SHI Jing, LIU Feiyu, et al. Effect of particle gradation on static and dynamic direct shear properties of geogrid-sand interface[J]. Rock and Soil Mechanics, 2019, 40(1): 109-117. (in Chinese)
    [14]
    WANG H L, ZHOU W H, YIN Z Y, et al. Effect of grain size distribution of sandy soil on shearing behaviors at soil–structure interface[J]. Journal of Materials in Civil Engineering, 2019, 31(10): 04019238. doi: 10.1061/(ASCE)MT.1943-5533.0002880
    [15]
    KOU H L, DIAO W Z, ZHANG W C, et al. Experimental study of interface shearing between calcareous sand and steel plate considering surface roughness and particle size[J]. Applied Ocean Research, 2021, 107: 102490. doi: 10.1016/j.apor.2020.102490
    [16]
    刘亚琼. 粗颗粒含量对粗粒土—混凝土结构接触面剪切力学性质的影响[J]. 工程勘察, 2022, 50(2): 7-12.

    LIU Yaqiong. Influence of coarse particle content on shear mechanical properties of interface between coarse grained soil and concrete structure[J]. Geotechnical Investigation & Surveying, 2022, 50(2): 7-12. (in Chinese)
    [17]
    SU L J, ZHOU W H, CHEN W B, et al. Effects of relative roughness and mean particle size on the shear strength of sand-steel interface[J]. Measurement, 2018, 122: 339-346. doi: 10.1016/j.measurement.2018.03.003
    [18]
    TEHRANI F S, HAN F, SALGADO R, et al. Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand[J]. Géotechnique, 2016, 66(5): 386-400. doi: 10.1680/jgeot.15.P.007
    [19]
    金子豪, 杨奇, 陈琛, 等. 粗糙度对混凝土-砂土接触面力学特性的影响试验研究[J]. 岩石力学与工程学报, 2018, 37(3): 754-765.

    JIN Zihao, YANG Qi, CHEN Chen, et al. Experimental study on effects of the roughness on mechanical behaviors of concrete-sand interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 754-765. (in Chinese)
    [20]
    YOSHIMI Y, KISHIDA T. A ring torsion apparatus for evaluating friction between soil and metal surfaces[J]. Geotechnical Testing Journal, 1981, 4(4): 145. doi: 10.1520/GTJ10783J
    [21]
    UESUGI M, KISHIDA H. Frictional resistance at yield between dry sand and mild steel[J]. Soils and Foundations, 1986, 26(4): 139-149. doi: 10.3208/sandf1972.26.4_139
    [22]
    UESUGI M, KISHIDA H. Influential factors of friction between steel and dry sands[J]. Soils and Foundations, 1986, 26(2): 33-46. doi: 10.3208/sandf1972.26.2_33
    [23]
    MARTINEZ A, FROST J D. The influence of surface roughness form on the strength of sand–structure interfaces[J]. Géotechnique Letters, 2017, 7(1): 104-111. doi: 10.1680/jgele.16.00169
    [24]
    SUBBA R K S, ALLAM M M, ROBINSON R G, et al. Interfacial friction between sands and solid surfaces[J]. Geotechnical Engineering, 1998, 131(2): 75-82.
    [25]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI Guangxin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
    [26]
    NAMJOO A M, JAFARI K, TOUFIGH V. Effect of particle size of sand and surface properties of reinforcement on sand-geosynthetics and sand-carbon fiber polymer interface shear behavior[J]. Transportation Geotechnics, 2020, 24: 100403. doi: 10.1016/j.trgeo.2020.100403
    [27]
    CABALAR A F, DULUNDU K, TUNCAY K. Strength of various sands in triaxial and cyclic direct shear tests[J]. Engineering Geology, 2013, 156: 92-102. doi: 10.1016/j.enggeo.2013.01.011
    [28]
    KOERNER R M. Designing with Geosynthetics[M]. Engelwood Cliffs: Prentice Hall Inc, 1990.
  • Related Articles

    [1]CHENG Meng, TIAN Yihan, CUI Xiuwen, ZHANG Tong. Dynamic compressive strength model for rock-steel fiber-reinforced concrete composite layer[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2229-2236. DOI: 10.11779/CJGE20230686
    [2]QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. DOI: 10.11779/CJGE20220112
    [3]ZHAO Yun-ge, HUANG Lin-qi, LI Xi-bing. Identification of stages before and after damage strength and peak strength using acoustic emission tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1908-1916. DOI: 10.11779/CJGE202210017
    [4]HU Jing, YAO Yang-ping, ZHANG Xue-dong, WEI Ying-qi, ZHANG Zi-tao, CHEN Zu-yu. Dynamic strength criterion for rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 495-502. DOI: 10.11779/CJGE202003011
    [5]ZHANG Qiang, LI Cheng, GUO Qiang, MIN Ming, JIANG Bin-song, WANG Yan-ning. Exponential true triaxial strength criteria for rock[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 625-633. DOI: 10.11779/CJGE201804006
    [6]YIN Zhi-qiang, LI Xi-bing, JIN Jie-fang, YIN Tu-bing, LIU Kei-wei. Effects of unloading rates of confining pressure on dynamic strength and fragmentation characteristics of rock under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1296-1301.
    [7]Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1703-1708.
    [8]CAO Wengui, ZHAO Minghua, LIU Chengxue. A study on damage statistical strength theory for rock[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 820-823.
    [9]ZHAO Mingjie, XU Rong. The rock damage and strength study based on ultrasonic velocity[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 720-722.
    [10]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (346) PDF downloads (116) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return