• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Jing, YAO Yang-ping, ZHANG Xue-dong, WEI Ying-qi, ZHANG Zi-tao, CHEN Zu-yu. Dynamic strength criterion for rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 495-502. DOI: 10.11779/CJGE202003011
Citation: HU Jing, YAO Yang-ping, ZHANG Xue-dong, WEI Ying-qi, ZHANG Zi-tao, CHEN Zu-yu. Dynamic strength criterion for rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 495-502. DOI: 10.11779/CJGE202003011

Dynamic strength criterion for rock-like materials

More Information
  • Received Date: March 03, 2019
  • Available Online: December 07, 2022
  • The strength of rock-like materials has obvious strain rate effect. Based on the characteristics of uniaxial dynamic strength, a simple strength criterion is proposed, which can uniformly predict the uniaxial strength from quasi-static to dynamic. Under the framework of the unified strength criterion, the triaxial dynamic strength criterion is studied. In the double-logarithmic coordinate system, the meridian strength envelopes at different strain rates are approximately parallel. The effects of friction, hydrostatic pressure and intermediate principal stress of the materials are not affected by the change of strain rate. Thus, a dynamic coordinate system is established, and the unified strength criterion is extended to consider the strain rate effect. Based on the obtained criterion, the uniaxial compressive and tensile strength are investigated. The strength criterion will represent similar characteristics to those obtained by uniaxial tests. Finally, the strength criterion is verified by strength tests of concrete. By fully understanding the dynamic strength characteristics, the parameters in the proposed strength criterion have clear physical meanings, and can provide a theoretical basis for dynamic response analysis.
  • [1]
    杜修力, 王阳, 路德春. 混凝土材料的非线性单轴动态强度准则[J]. 水利学报, 2010, 41(3): 300-309. doi: 10.13243/j.cnki.slxb.2010.03.012

    DU Xiu-li, WANG Yang, LU De-chun. Non-linear uniaxial dynamic strength criterion for concrete[J]. Journal of Hydraulic Engineering, 2010, 41(3): 300-309. (in Chinese) doi: 10.13243/j.cnki.slxb.2010.03.012
    [2]
    LU D, WANG G, DU X, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete[J]. International Journal of Impact Engineering, 2017, 103: 124-137. doi: 10.1016/j.ijimpeng.2017.01.011
    [3]
    ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17): 4648-4661. doi: 10.1016/j.ijsolstr.2008.04.002
    [4]
    REINHARDT H W, ROSSI P, VAN Mier J G M. Joint investigation of concrete at high rates of loading[J]. Materials and Structures, 1990, 23(3): 213-216. doi: 10.1007/BF02473020
    [5]
    EIBL J, SCHMIDT-HURTIENNE B. Strain-rate-sensitive constitutive law for concrete[J]. Journal of Engineering Mechanics, 1999, 125(12): 1411-1420. doi: 10.1061/(ASCE)0733-9399(1999)125:12(1411)
    [6]
    周秋景, 张国新, 李同春. 基于多轴等效应变动力损伤模型的混凝土坝工作性态分析[J]. 水力发电, 2014(12): 26-30. doi: 10.3969/j.issn.0559-9342.2014.12.009

    ZHOU Qiu-jing, ZHANG Guo-xin, LI Tong-chun. Analysis on working performance of concrete dams with a dynamic multi-axis equivalent strain damage model[J]. Water Power, 2014(12): 26-30. (in Chinese) doi: 10.3969/j.issn.0559-9342.2014.12.009
    [7]
    王怀亮, 宋玉普. 多轴应力状态下混凝土的动态强度准则[J]. 哈尔滨工业大学学报, 2014, 46(4): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201404016.htm

    WANG Huai-liang, SONG Yu-pu. A dynamic strength criterion of concrete under multiaxial stress state[J]. Journal of Harbin Institute of Technology, 2014, 46(4): 93-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201404016.htm
    [8]
    YAO Y, LU D, ZHOU A, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199
    [9]
    杜修力, 王国盛, 路德春. 混凝土材料非线性多轴动态强度准则[J]. 中国科学:技术科学, 2014, 44(12): 1319-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201412010.htm

    DU Xiu-li, WANG Guo-sheng, LU De-chun. Nonlinear multiaxial dynamic strength criterion for concrete material[J]. Scientia Sinica Technologica, 2014, 44(12): 1319-1332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201412010.htm
    [10]
    QIAN Q, QI C, WANG M. Dynamic strength of rocks and physical nature of rock strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2009, 1(1): 1-10. doi: 10.3724/SP.J.1235.2009.00001
    [11]
    WANG G, LU D, DU X, et al. Dynamic multiaxial strength criterion for concrete based on strain rate-dependent strength parameters[J]. J Eng Mech ASCE, 2018, 144: 4018018. doi: 10.1061/(ASCE)EM.1943-7889.0001428
    [12]
    YAO Y, HU J, ZHOU A, et al. Unified strength criterion for soils, gravels, rocks, and concretes[J]. Acta Geotechnica, 2015, 10(6): 749-759. doi: 10.1007/s11440-015-0404-x
    [13]
    吕培印. 混凝土单轴、双轴动态强度和变形试验研究[D]. 大连: 大连理工大学, 2001.

    LÜ Pei-yin. Experimental Study on Dynamic Strength and Deformation of Concrete Under Uniaxial and Biaxial Action[J]. Dalian: Dalian University of Technology, 2001. (in Chinese)
    [14]
    过镇海. 混凝土的强度和变形试验基础和本构关系[M]. 北京: 清华大学出版社, 1997.

    GUO Zhen-hai. Strength and Deformation of Concrete[M]. Beijing: Tsinghua University Press, 1997. (in Chinese)
    [15]
    张建民, 邵生俊. 三维应力条件下饱和砂土的动有效强度准则[J]. 水利学报, 1989(3): 54-59. doi: 10.3321/j.issn:0559-9350.1989.03.009

    ZHANG Jian-min, SHAO Sheng-jun. Dynamic effective strength criterion of saturated sand under three-dimensional stress[J]. Journal of Hydraulic Engineering, 1989(3): 54-59. (in Chinese) doi: 10.3321/j.issn:0559-9350.1989.03.009
    [16]
    LI H B, LI T J, ZHAO J. Triaxial compression tests on a granite at different strain rates and confining pressures[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(8): 1057-1063. doi: 10.1016/S1365-1609(99)00120-3
    [17]
    SHI L, WANG L, SONG Y, et al. Dynamic multiaxial strength and failure criterion of dam concrete[J]. Construction and Building Materials, 2014, 66: 181-191. doi: 10.1016/j.conbuildmat.2014.05.076
    [18]
    CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763-777. doi: 10.1016/S1365-1609(03)00072-8
    [19]
    CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/9/10/11/12/13/14): 907-916.
    [20]
    KUBOTA S, OGATA Y, WADA Y, et al. Estimation of dynamic tensile strength of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 397-406. doi: 10.1016/j.ijrmms.2007.07.003
    [21]
    WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup[J]. Mechanics of Materials, 2009, 41(3): 252-260. doi: 10.1016/j.mechmat.2008.10.004
    [22]
    WANG Q Z, LI W, SONG X L. A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB[J]. Pure and Applied Geophysics, 2006, 163(5/6): 1091-1100.
    [23]
    GOLDSMITH W, SACKMAN J L, EWERTS C. Static and Dynamic Fracture Strength of Barre Granite[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1976: 303-309.
    [24]
    WANG H, RAMESH K T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression[J]. Acta Materialia, 2004, 52(2): 355-367. doi: 10.1016/j.actamat.2003.09.036
  • Related Articles

    [1]HU Zai-qiang, GUO Jing, LIANG Zhi-chao, WANG Kai, FENG Zhe, CHEN Zhen-peng. Effects of clay content on physical and mechanical properties of fine tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 16-21. DOI: 10.11779/CJGE2020S1004
    [2]CHEN Rong, LI Bo, HAO Dong-xue, GAO Yu-cong. Simulation for interaction between geogrids and soil by cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 934-940. DOI: 10.11779/CJGE202005016
    [3]CUI Peng-bo, ZHU Yong-quan, LIU Yong, WANG Qing-lei, PAN Ying-dong. Calculation of ultimate supporting forces of shield tunnels in unsaturated sandy soils considering soil arching effects[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 873-881. DOI: 10.11779/CJGE202005009
    [4]WANG Gang, ZHANG Shu-bo, LIAN Lian, ZHAO Cheng, WANG Ke, ZHANG Xian-da. Macro-micro study on shear failure mechanism of rock joint based on zero-thickness cohesive element[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2224-2232. DOI: 10.11779/CJGE201912007
    [5]YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. DOI: 10.11779/CJGE201903018
    [6]LING Dao-sheng, TU Fu-bin, BU Ling-fang. Enhanced finite element analysis of progressive failure of slopes based on cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1387-1393.
    [7]LING Dao-sheng, HAN Chao, CHEN Yun-min, LIN Cheng-xiang. Interfacial cohesive zone model and progressive failure of soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1405-1411.
    [8]MA Yongzheng, ZHENG Hong, ZHU Hehua, CAI Yongchang. Effect of cohesion on evaluating slope stability factor of safety by DDA method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1088-1093.
    [9]MA Ping, QIN Siqing, SUN Qiang. Computation of lateral soil pressure on soil nailing wall considering cohesion force and cut slope angle[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1888-1891.
    [10]ZAI Jinmin, ZHANG Yunjun, WANG Xudong, CHANG Yinsheng. Experimental research on deformation and strength of cohesive soil under lateral extension[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1409-1412.
  • Cited by

    Periodical cited type(5)

    1. 梁鹏,李壮,刘俊岭,王聚贤,王骏涛. 三点弯曲试验下花岗岩应变场及损伤演化研究. 地下空间与工程学报. 2023(02): 486-494 .
    2. 杨旭旭,吴岳,靖洪文. 基于超声波实测的巷道围岩裂缝扩展和强度演变规律研究. 采矿与安全工程学报. 2021(03): 528-537 .
    3. 张超,杨楚卿,白允. 岩石类脆性材料损伤演化分析及其模型方法研究. 岩土力学. 2021(09): 2344-2354 .
    4. 何泓易. Hoek-Brown强度准则在隧道围岩卸荷试验中的应用研究. 韶关学院学报. 2021(12): 19-23 .
    5. 王思,胡晶,张雪东,任晓丹,陈祖煜,张紫涛. 不同水深水下爆炸数值及离心试验研究. 哈尔滨工业大学学报. 2020(06): 78-84 .

    Other cited types(2)

Catalog

    Article views (381) PDF downloads (256) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return