Citation: | HU Jing, YAO Yang-ping, ZHANG Xue-dong, WEI Ying-qi, ZHANG Zi-tao, CHEN Zu-yu. Dynamic strength criterion for rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 495-502. DOI: 10.11779/CJGE202003011 |
[1] |
杜修力, 王阳, 路德春. 混凝土材料的非线性单轴动态强度准则[J]. 水利学报, 2010, 41(3): 300-309. doi: 10.13243/j.cnki.slxb.2010.03.012
DU Xiu-li, WANG Yang, LU De-chun. Non-linear uniaxial dynamic strength criterion for concrete[J]. Journal of Hydraulic Engineering, 2010, 41(3): 300-309. (in Chinese) doi: 10.13243/j.cnki.slxb.2010.03.012
|
[2] |
LU D, WANG G, DU X, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete[J]. International Journal of Impact Engineering, 2017, 103: 124-137. doi: 10.1016/j.ijimpeng.2017.01.011
|
[3] |
ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17): 4648-4661. doi: 10.1016/j.ijsolstr.2008.04.002
|
[4] |
REINHARDT H W, ROSSI P, VAN Mier J G M. Joint investigation of concrete at high rates of loading[J]. Materials and Structures, 1990, 23(3): 213-216. doi: 10.1007/BF02473020
|
[5] |
EIBL J, SCHMIDT-HURTIENNE B. Strain-rate-sensitive constitutive law for concrete[J]. Journal of Engineering Mechanics, 1999, 125(12): 1411-1420. doi: 10.1061/(ASCE)0733-9399(1999)125:12(1411)
|
[6] |
周秋景, 张国新, 李同春. 基于多轴等效应变动力损伤模型的混凝土坝工作性态分析[J]. 水力发电, 2014(12): 26-30. doi: 10.3969/j.issn.0559-9342.2014.12.009
ZHOU Qiu-jing, ZHANG Guo-xin, LI Tong-chun. Analysis on working performance of concrete dams with a dynamic multi-axis equivalent strain damage model[J]. Water Power, 2014(12): 26-30. (in Chinese) doi: 10.3969/j.issn.0559-9342.2014.12.009
|
[7] |
王怀亮, 宋玉普. 多轴应力状态下混凝土的动态强度准则[J]. 哈尔滨工业大学学报, 2014, 46(4): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201404016.htm
WANG Huai-liang, SONG Yu-pu. A dynamic strength criterion of concrete under multiaxial stress state[J]. Journal of Harbin Institute of Technology, 2014, 46(4): 93-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201404016.htm
|
[8] |
YAO Y, LU D, ZHOU A, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199
|
[9] |
杜修力, 王国盛, 路德春. 混凝土材料非线性多轴动态强度准则[J]. 中国科学:技术科学, 2014, 44(12): 1319-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201412010.htm
DU Xiu-li, WANG Guo-sheng, LU De-chun. Nonlinear multiaxial dynamic strength criterion for concrete material[J]. Scientia Sinica Technologica, 2014, 44(12): 1319-1332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201412010.htm
|
[10] |
QIAN Q, QI C, WANG M. Dynamic strength of rocks and physical nature of rock strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2009, 1(1): 1-10. doi: 10.3724/SP.J.1235.2009.00001
|
[11] |
WANG G, LU D, DU X, et al. Dynamic multiaxial strength criterion for concrete based on strain rate-dependent strength parameters[J]. J Eng Mech ASCE, 2018, 144: 4018018. doi: 10.1061/(ASCE)EM.1943-7889.0001428
|
[12] |
YAO Y, HU J, ZHOU A, et al. Unified strength criterion for soils, gravels, rocks, and concretes[J]. Acta Geotechnica, 2015, 10(6): 749-759. doi: 10.1007/s11440-015-0404-x
|
[13] |
吕培印. 混凝土单轴、双轴动态强度和变形试验研究[D]. 大连: 大连理工大学, 2001.
LÜ Pei-yin. Experimental Study on Dynamic Strength and Deformation of Concrete Under Uniaxial and Biaxial Action[J]. Dalian: Dalian University of Technology, 2001. (in Chinese)
|
[14] |
过镇海. 混凝土的强度和变形试验基础和本构关系[M]. 北京: 清华大学出版社, 1997.
GUO Zhen-hai. Strength and Deformation of Concrete[M]. Beijing: Tsinghua University Press, 1997. (in Chinese)
|
[15] |
张建民, 邵生俊. 三维应力条件下饱和砂土的动有效强度准则[J]. 水利学报, 1989(3): 54-59. doi: 10.3321/j.issn:0559-9350.1989.03.009
ZHANG Jian-min, SHAO Sheng-jun. Dynamic effective strength criterion of saturated sand under three-dimensional stress[J]. Journal of Hydraulic Engineering, 1989(3): 54-59. (in Chinese) doi: 10.3321/j.issn:0559-9350.1989.03.009
|
[16] |
LI H B, LI T J, ZHAO J. Triaxial compression tests on a granite at different strain rates and confining pressures[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(8): 1057-1063. doi: 10.1016/S1365-1609(99)00120-3
|
[17] |
SHI L, WANG L, SONG Y, et al. Dynamic multiaxial strength and failure criterion of dam concrete[J]. Construction and Building Materials, 2014, 66: 181-191. doi: 10.1016/j.conbuildmat.2014.05.076
|
[18] |
CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763-777. doi: 10.1016/S1365-1609(03)00072-8
|
[19] |
CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/9/10/11/12/13/14): 907-916.
|
[20] |
KUBOTA S, OGATA Y, WADA Y, et al. Estimation of dynamic tensile strength of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 397-406. doi: 10.1016/j.ijrmms.2007.07.003
|
[21] |
WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup[J]. Mechanics of Materials, 2009, 41(3): 252-260. doi: 10.1016/j.mechmat.2008.10.004
|
[22] |
WANG Q Z, LI W, SONG X L. A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB[J]. Pure and Applied Geophysics, 2006, 163(5/6): 1091-1100.
|
[23] |
GOLDSMITH W, SACKMAN J L, EWERTS C. Static and Dynamic Fracture Strength of Barre Granite[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1976: 303-309.
|
[24] |
WANG H, RAMESH K T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression[J]. Acta Materialia, 2004, 52(2): 355-367. doi: 10.1016/j.actamat.2003.09.036
|
[1] | HU Zai-qiang, GUO Jing, LIANG Zhi-chao, WANG Kai, FENG Zhe, CHEN Zhen-peng. Effects of clay content on physical and mechanical properties of fine tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 16-21. DOI: 10.11779/CJGE2020S1004 |
[2] | CHEN Rong, LI Bo, HAO Dong-xue, GAO Yu-cong. Simulation for interaction between geogrids and soil by cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 934-940. DOI: 10.11779/CJGE202005016 |
[3] | CUI Peng-bo, ZHU Yong-quan, LIU Yong, WANG Qing-lei, PAN Ying-dong. Calculation of ultimate supporting forces of shield tunnels in unsaturated sandy soils considering soil arching effects[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 873-881. DOI: 10.11779/CJGE202005009 |
[4] | WANG Gang, ZHANG Shu-bo, LIAN Lian, ZHAO Cheng, WANG Ke, ZHANG Xian-da. Macro-micro study on shear failure mechanism of rock joint based on zero-thickness cohesive element[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2224-2232. DOI: 10.11779/CJGE201912007 |
[5] | YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. DOI: 10.11779/CJGE201903018 |
[6] | LING Dao-sheng, TU Fu-bin, BU Ling-fang. Enhanced finite element analysis of progressive failure of slopes based on cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1387-1393. |
[7] | LING Dao-sheng, HAN Chao, CHEN Yun-min, LIN Cheng-xiang. Interfacial cohesive zone model and progressive failure of soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1405-1411. |
[8] | MA Yongzheng, ZHENG Hong, ZHU Hehua, CAI Yongchang. Effect of cohesion on evaluating slope stability factor of safety by DDA method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1088-1093. |
[9] | MA Ping, QIN Siqing, SUN Qiang. Computation of lateral soil pressure on soil nailing wall considering cohesion force and cut slope angle[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1888-1891. |
[10] | ZAI Jinmin, ZHANG Yunjun, WANG Xudong, CHANG Yinsheng. Experimental research on deformation and strength of cohesive soil under lateral extension[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1409-1412. |