Citation: | CHENG Meng, TIAN Yihan, CUI Xiuwen, ZHANG Tong. Dynamic compressive strength model for rock-steel fiber-reinforced concrete composite layer[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2229-2236. DOI: 10.11779/CJGE20230686 |
[1] |
郭东明, 闫鹏洋, 凡龙飞, 等. 喷层混凝土-围岩组合体波动特性及动力特性研究[J]. 振动与冲击, 2018, 37(24): 85-91, 136.
GUO Dongming, YAN Pengyang, FAN Longfei, et al. A study on the stress wave characteristics and dynamic mechanical property of the sprayed concrete-surrounding rock combined body[J]. Journal of Vibration and Shock, 2018, 37(24): 85-91, 136. (in Chinese)
|
[2] |
JIANG Q, YANG Y, YAN F, et al. Deformation and failure behaviours of rock-concrete interfaces with natural morphology under shear testing[J]. Construction and Building Materials, 2021, 293: 123468. doi: 10.1016/j.conbuildmat.2021.123468
|
[3] |
MOUZANNAR H, BOST M, LEROUX M, et al. Experimental study of the shear strength of bonded concrete–rock interfaces: surface morphology and scale effect[J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2601-2625. doi: 10.1007/s00603-017-1259-2
|
[4] |
CHANG X, LU J Y, WANG S Y, et al. Mechanical performances of rock-concrete bi-material disks under diametrical compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 71-77. doi: 10.1016/j.ijrmms.2018.02.008
|
[5] |
ZHU J B, BAO W Y, PENG Q, et al. Influence of substrate properties and interfacial roughness on static and dynamic tensile behaviour of rock-shotcrete interface from macro and micro views[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104350. doi: 10.1016/j.ijrmms.2020.104350
|
[6] |
ZHAO B Y, LIU Y, LIU D Y, et al. Research on the influence of contact surface constraint on mechanical properties of rock-concrete composite specimens under compressive loads[J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 322-330. doi: 10.1007/s11709-019-0594-7
|
[7] |
陈猛, 王浩, 齐迈, 等. 岩石–钢纤维混凝土复合层动态压缩性能试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1222-1230.
CHEN Meng, WANG Hao, QI Mai, et al. Experimental study on dynamic compressive properties of composite layers of rock and steel fiber reinforced concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(06): 1222-1230. (in Chinese)
|
[8] |
赵坚, 李海波. 莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性[J]. 岩石力学与工程学报, 2003, 22(2): 171-176. doi: 10.3321/j.issn:1000-6915.2003.02.001
ZHAO Jian, LI Haibo. Estimating the dynamic strength of rock using Mohr-coulomb and hoek-brown criteria[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 171-176. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.02.001
|
[9] |
宫凤强, 司雪峰, 李夕兵, 等. 基于应变率效应的岩石动态Mohr-Coulomb准则和Hoek-Brown准则研究[J]. 中国有色金属学报, 2016, 26(8): 1763-1773.
GONG Fengqiang, SI Xuefeng, LI Xibing, et al. Rock dynamic Mohr-Coulomb and Hock-Brown criteria based on strain rate effect[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(8): 1763-1773. (in Chinese)
|
[10] |
宫凤强, 陆道辉, 李夕兵, 等. 不同应变率下砂岩动态强度准则的试验研究[J]. 岩土力学, 2013, 34(9): 2433-2441.
GONG Fengqiang, LU Daohui, LI Xibing, et al. Experimental research of sandstone dynamic strength criterion under different strain rates[J]. Rock and Soil Mechanics, 2013, 34(9): 2433-2441. (in Chinese)
|
[11] |
钱七虎, 戚承志. 岩石、岩体的动力强度与动力破坏准则[J]. 同济大学学报(自然科学版), 2008, 36(12): 1599-1605. doi: 10.3321/j.issn:0253-374X.2008.12.001
QIAN Qihu, QI Chengzhi. Dynamic strength and dynamic fracture criteria of rock and rock mass[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1599-1605. (in Chinese) doi: 10.3321/j.issn:0253-374X.2008.12.001
|
[12] |
GONG F Q, SI X F, LI X B, et al. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 211-219. doi: 10.1016/j.ijrmms.2018.12.005
|
[13] |
SI X F, GONG F Q, LI X B, et al. Dynamic Mohr–Coulomb and Hoek–Brown strength criteria of sandstone at high strain rates[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 48-59. doi: 10.1016/j.ijrmms.2018.12.013
|
[14] |
FU Q, XU W R, HE J Q, et al. Dynamic strength criteria for basalt fibre-reinforced coral aggregate concrete[J]. Composites Communications, 2021, 28: 100983. doi: 10.1016/j.coco.2021.100983
|
[15] |
LU D C, WANG G S, DU X L, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete[J]. International Journal of Impact Engineering, 2017, 103: 124-137. doi: 10.1016/j.ijimpeng.2017.01.011
|
[16] |
ZHAO B Y, LIU Y, HUANG T Z, et al. Experimental study on strength and deformation characteristics of rock–concrete composite specimens under compressive condition[J]. Geotechnical and Geological Engineering, 2019, 37(4): 2693-2706. doi: 10.1007/s10706-018-00787-9
|
[17] |
陈猛, 崔秀文, 颜鑫, 等. 岩石-钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
CHEN Meng, CUI Xiuwen, YAN Xin, et al. Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer[J]. Rock and Soil Mechanics, 2021, 42(3): 638-646. (in Chinese)
|
[18] |
ZHANG X H, CHIU Y W, HAO H, et al. Dynamic compressive properties of Kalgoorlie basalt rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 135: 104512. doi: 10.1016/j.ijrmms.2020.104512
|
[19] |
袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨[J]. 爆炸与冲击, 2022, 42(1): 1-13.
YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, et al. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion and shock waves, 2022, 42(1): 1-13. (in Chinese)
|
[20] |
FENG S W, ZHOU Y, WANG Y, et al. Experimental research on the dynamic mechanical properties and damage characteristics of lightweight foamed concrete under impact loading[J]. International Journal of Impact Engineering, 2020, 140: 103558. doi: 10.1016/j.ijimpeng.2020.103558
|
[21] |
王健, 李二兵, 谭跃虎, 等. 层状盐岩及泥岩夹层动态力学特性对比试验研究[J]. 岩石力学与工程学报, 2017, 36(12): 3002-3011.
WANG Jian, LI Erbing, TAN Yuehu, et al. Comparative experimental study on dynamic mechanical properties of bedded salt rock and mudstone interbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3002-3011. (in Chinese)
|
[22] |
LI X Z, QI C Z. A micro-macro dynamic compressive-shear fracture model under static confining pressure in brittle rocks[J]. International Journal of Impact Engineering, 2018, 122: 109-118. doi: 10.1016/j.ijimpeng.2018.07.010
|
[23] |
ZHAO J, LI H B, WU M B, et al. Dynamic uniaxial compression tests on a granite[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(2): 273-277. doi: 10.1016/S0148-9062(99)00008-X
|
[1] | LU Kunlin, MEI Yifan, WANG Linfei, JIA Senlin, QIN Tao, ZHU Dayong. Three-dimensional limit equilibrium method for rock slopes by constructing normal stress distribution over sliding surface and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2265-2274. DOI: 10.11779/CJGE20230753 |
[2] | SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781 |
[3] | YUAN Hai-ping, HAN Zhi-yong, LIN Hang, WANG Bin, CHEN Shui-mei. Rebound effect of rock & soil excavation based on M-C elastic-plastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 24-29. DOI: 10.11779/CJGE2014S2005 |
[4] | QU Xie, HUANG Mao-song, Lü Xi-lin. Progressive failure of soils based on non-local Mohr-Coulomb models[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 523-530. |
[5] | DAN Hanbo, WANG Lizhong. Strain-rate dependent behaviors of K0 consolidated clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 718-725. |
[6] | ZOU Jinfeng, LI Liang, YANG Xiaoli, DENG Zongwei. Study on the ultimate pullout force of pre-stressed cable based on nonlinear Mohr-Coulomb failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 107-111. |
[7] | YUAN Haiping, CAO Ping, XU Wanzhong, CHEN Yuanjiang. Visco-elastop-lastic constitutive relationship of rock and modified Burgers creep model[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 796-799. |
[8] | LI Haipeng, LIN Chuannian, ZHANG Junbing, ZHU Yuanlin. Uniaxial compressive strength of saturated frozen clay at constant strain rate[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 105-109. |
[9] | Peng Wanwei. Tensile strength of frozen loess varying with strain rate and temperature[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 31-33. |
[10] | Feng Yixing, Qiu Yiping, Li Zhangming. The Effect of Strain Rate on Strength aud Deformability of Rock[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(6): 50-56. |