• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHENG Meng, TIAN Yihan, CUI Xiuwen, ZHANG Tong. Dynamic compressive strength model for rock-steel fiber-reinforced concrete composite layer[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2229-2236. DOI: 10.11779/CJGE20230686
Citation: CHENG Meng, TIAN Yihan, CUI Xiuwen, ZHANG Tong. Dynamic compressive strength model for rock-steel fiber-reinforced concrete composite layer[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2229-2236. DOI: 10.11779/CJGE20230686

Dynamic compressive strength model for rock-steel fiber-reinforced concrete composite layer

More Information
  • Received Date: July 19, 2023
  • Available Online: April 25, 2024
  • In order to study the compressive strength model for rock-steel fiber-reinforced concrete (R-SFRC) composite layer under impact loading, the dynamic impact compression tests on the granite, concrete and R-SFRC composite layer are carried out by using the separated Hopkinson pressure bar to obtain the dynamic compressive strengths of different materials. With the regression fitting of the test results, three types of strength models for the R-SFRC composite layer called logarithmic, power function and strength-strain rate dependent mechanism are obtained, and the dynamic compressive strength models for the R-SFRC composite layer are established based on the Mohr-Coulomb strength criterion considering the interface interaction of the R-SFRC composite layer. The results show that the dynamic compressive strength of the R-SFRC composite layer increases with the increase of the strain rate and steel fiber content, and the range of the correlation coefficient of three regression models is 0.918~0.999, and the R2 of the dependent mechanism model is the largest. The error range of the theoretical value of the dynamic compressive strength calculated based on the Mohr-Coulomb strength criterion relative to the test value is -9.23%~3.16%, and the maximum error value of the logarithmic model is the smallest. The computational model for the dynamic compressive strength of the R-SFRC composite layer can provide a theoretical basis for the design of the surrounding rock of concrete-supported tunnels.
  • [1]
    郭东明, 闫鹏洋, 凡龙飞, 等. 喷层混凝土-围岩组合体波动特性及动力特性研究[J]. 振动与冲击, 2018, 37(24): 85-91, 136.

    GUO Dongming, YAN Pengyang, FAN Longfei, et al. A study on the stress wave characteristics and dynamic mechanical property of the sprayed concrete-surrounding rock combined body[J]. Journal of Vibration and Shock, 2018, 37(24): 85-91, 136. (in Chinese)
    [2]
    JIANG Q, YANG Y, YAN F, et al. Deformation and failure behaviours of rock-concrete interfaces with natural morphology under shear testing[J]. Construction and Building Materials, 2021, 293: 123468. doi: 10.1016/j.conbuildmat.2021.123468
    [3]
    MOUZANNAR H, BOST M, LEROUX M, et al. Experimental study of the shear strength of bonded concrete–rock interfaces: surface morphology and scale effect[J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2601-2625. doi: 10.1007/s00603-017-1259-2
    [4]
    CHANG X, LU J Y, WANG S Y, et al. Mechanical performances of rock-concrete bi-material disks under diametrical compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 71-77. doi: 10.1016/j.ijrmms.2018.02.008
    [5]
    ZHU J B, BAO W Y, PENG Q, et al. Influence of substrate properties and interfacial roughness on static and dynamic tensile behaviour of rock-shotcrete interface from macro and micro views[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104350. doi: 10.1016/j.ijrmms.2020.104350
    [6]
    ZHAO B Y, LIU Y, LIU D Y, et al. Research on the influence of contact surface constraint on mechanical properties of rock-concrete composite specimens under compressive loads[J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 322-330. doi: 10.1007/s11709-019-0594-7
    [7]
    陈猛, 王浩, 齐迈, 等. 岩石–钢纤维混凝土复合层动态压缩性能试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1222-1230.

    CHEN Meng, WANG Hao, QI Mai, et al. Experimental study on dynamic compressive properties of composite layers of rock and steel fiber reinforced concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(06): 1222-1230. (in Chinese)
    [8]
    赵坚, 李海波. 莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性[J]. 岩石力学与工程学报, 2003, 22(2): 171-176. doi: 10.3321/j.issn:1000-6915.2003.02.001

    ZHAO Jian, LI Haibo. Estimating the dynamic strength of rock using Mohr-coulomb and hoek-brown criteria[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 171-176. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.02.001
    [9]
    宫凤强, 司雪峰, 李夕兵, 等. 基于应变率效应的岩石动态Mohr-Coulomb准则和Hoek-Brown准则研究[J]. 中国有色金属学报, 2016, 26(8): 1763-1773.

    GONG Fengqiang, SI Xuefeng, LI Xibing, et al. Rock dynamic Mohr-Coulomb and Hock-Brown criteria based on strain rate effect[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(8): 1763-1773. (in Chinese)
    [10]
    宫凤强, 陆道辉, 李夕兵, 等. 不同应变率下砂岩动态强度准则的试验研究[J]. 岩土力学, 2013, 34(9): 2433-2441.

    GONG Fengqiang, LU Daohui, LI Xibing, et al. Experimental research of sandstone dynamic strength criterion under different strain rates[J]. Rock and Soil Mechanics, 2013, 34(9): 2433-2441. (in Chinese)
    [11]
    钱七虎, 戚承志. 岩石、岩体的动力强度与动力破坏准则[J]. 同济大学学报(自然科学版), 2008, 36(12): 1599-1605. doi: 10.3321/j.issn:0253-374X.2008.12.001

    QIAN Qihu, QI Chengzhi. Dynamic strength and dynamic fracture criteria of rock and rock mass[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1599-1605. (in Chinese) doi: 10.3321/j.issn:0253-374X.2008.12.001
    [12]
    GONG F Q, SI X F, LI X B, et al. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 211-219. doi: 10.1016/j.ijrmms.2018.12.005
    [13]
    SI X F, GONG F Q, LI X B, et al. Dynamic Mohr–Coulomb and Hoek–Brown strength criteria of sandstone at high strain rates[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 48-59. doi: 10.1016/j.ijrmms.2018.12.013
    [14]
    FU Q, XU W R, HE J Q, et al. Dynamic strength criteria for basalt fibre-reinforced coral aggregate concrete[J]. Composites Communications, 2021, 28: 100983. doi: 10.1016/j.coco.2021.100983
    [15]
    LU D C, WANG G S, DU X L, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete[J]. International Journal of Impact Engineering, 2017, 103: 124-137. doi: 10.1016/j.ijimpeng.2017.01.011
    [16]
    ZHAO B Y, LIU Y, HUANG T Z, et al. Experimental study on strength and deformation characteristics of rock–concrete composite specimens under compressive condition[J]. Geotechnical and Geological Engineering, 2019, 37(4): 2693-2706. doi: 10.1007/s10706-018-00787-9
    [17]
    陈猛, 崔秀文, 颜鑫, 等. 岩石-钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.

    CHEN Meng, CUI Xiuwen, YAN Xin, et al. Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer[J]. Rock and Soil Mechanics, 2021, 42(3): 638-646. (in Chinese)
    [18]
    ZHANG X H, CHIU Y W, HAO H, et al. Dynamic compressive properties of Kalgoorlie basalt rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 135: 104512. doi: 10.1016/j.ijrmms.2020.104512
    [19]
    袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨[J]. 爆炸与冲击, 2022, 42(1): 1-13.

    YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, et al. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion and shock waves, 2022, 42(1): 1-13. (in Chinese)
    [20]
    FENG S W, ZHOU Y, WANG Y, et al. Experimental research on the dynamic mechanical properties and damage characteristics of lightweight foamed concrete under impact loading[J]. International Journal of Impact Engineering, 2020, 140: 103558. doi: 10.1016/j.ijimpeng.2020.103558
    [21]
    王健, 李二兵, 谭跃虎, 等. 层状盐岩及泥岩夹层动态力学特性对比试验研究[J]. 岩石力学与工程学报, 2017, 36(12): 3002-3011.

    WANG Jian, LI Erbing, TAN Yuehu, et al. Comparative experimental study on dynamic mechanical properties of bedded salt rock and mudstone interbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3002-3011. (in Chinese)
    [22]
    LI X Z, QI C Z. A micro-macro dynamic compressive-shear fracture model under static confining pressure in brittle rocks[J]. International Journal of Impact Engineering, 2018, 122: 109-118. doi: 10.1016/j.ijimpeng.2018.07.010
    [23]
    ZHAO J, LI H B, WU M B, et al. Dynamic uniaxial compression tests on a granite[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(2): 273-277. doi: 10.1016/S0148-9062(99)00008-X
  • Related Articles

    [1]LU Kunlin, MEI Yifan, WANG Linfei, JIA Senlin, QIN Tao, ZHU Dayong. Three-dimensional limit equilibrium method for rock slopes by constructing normal stress distribution over sliding surface and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2265-2274. DOI: 10.11779/CJGE20230753
    [2]SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781
    [3]YUAN Hai-ping, HAN Zhi-yong, LIN Hang, WANG Bin, CHEN Shui-mei. Rebound effect of rock & soil excavation based on M-C elastic-plastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 24-29. DOI: 10.11779/CJGE2014S2005
    [4]QU Xie, HUANG Mao-song, Lü Xi-lin. Progressive failure of soils based on non-local Mohr-Coulomb models[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 523-530.
    [5]DAN Hanbo, WANG Lizhong. Strain-rate dependent behaviors of K0 consolidated clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 718-725.
    [6]ZOU Jinfeng, LI Liang, YANG Xiaoli, DENG Zongwei. Study on the ultimate pullout force of pre-stressed cable based on nonlinear Mohr-Coulomb failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 107-111.
    [7]YUAN Haiping, CAO Ping, XU Wanzhong, CHEN Yuanjiang. Visco-elastop-lastic constitutive relationship of rock and modified Burgers creep model[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 796-799.
    [8]LI Haipeng, LIN Chuannian, ZHANG Junbing, ZHU Yuanlin. Uniaxial compressive strength of saturated frozen clay at constant strain rate[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 105-109.
    [9]Peng Wanwei. Tensile strength of frozen loess varying with strain rate and temperature[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 31-33.
    [10]Feng Yixing, Qiu Yiping, Li Zhangming. The Effect of Strain Rate on Strength aud Deformability of Rock[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(6): 50-56.

Catalog

    Article views (345) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return