• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Yanguo, MA Qiang, LIU Kai, CAO Yuan, CHEN Yunmin. Centrifugal shaking table tests on soil liquefaction and progress of LEAP projects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 54-62. DOI: 10.11779/CJGE20221213
Citation: ZHOU Yanguo, MA Qiang, LIU Kai, CAO Yuan, CHEN Yunmin. Centrifugal shaking table tests on soil liquefaction and progress of LEAP projects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 54-62. DOI: 10.11779/CJGE20221213

Centrifugal shaking table tests on soil liquefaction and progress of LEAP projects

More Information
  • Received Date: May 30, 2021
  • Available Online: April 17, 2023
  • The centrifugal shaking table test is one of the most promising approaches to study soil liquefaction problems. On one hand, it can reproduce seismic response and reveal the ground failure mechanism induced by soil liquefaction, providing the scientific basis for developing the design methods for engineering practices; on the other hand, the test results can verify the relevant methods and constitutive models for soils used in numerical simulation. The principles of the centrifugal shaking table tests are briefly introduced and the research progress of centrifuge modeling for soil liquefaction problems are reviewed. Then the liquefaction experiments and analysis project (LEAP) and its verification and validation procedures are described. The new techniques developed to improve the repeatability of the centrifugal shaking table tests are introduced, including the shaking control of the shaking table, measurements of elastic wave velocities under high centrifuge acceleration, and particle image velocimetry (PIV)-based real-time monitoring of dynamic displacements. Finally, the research trends of the centrifugal shaking table tests in the field of soil liquefaction are discussed.
  • [1]
    王年香, 章为民. 混凝土面板堆石坝动态离心模型试验研究[J]. 岩土工程学报, 2003, 25(4): 504-507. doi: 10.3321/j.issn:1000-4548.2003.04.027

    WANG Nianxiang, ZHANG Weimin. Dynamic centrifuge model test for concrete face rock fill dam[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 504-507. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.04.027
    [2]
    ARULANANDAN K, SCOTT R F. Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems[M]. Rotterdam: Balkema, 1993.
    [3]
    MANZARI M T, KUTTER B L, ZEGHAL M et al. LEAP projects: concept and challenges[C]//Proceedings of the Fourth International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation (4th GEDMAR). Oxford, 2015.
    [4]
    陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915.

    CHEN Yunmin, MA Pengcheng, TANG Yao. Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. (in Chinese)
    [5]
    包承纲. 土力学的发展和土工离心模拟试验的现状[J]. 岩土力学, 1988, 9(4): 23-30.

    BAO Chenggang. Development of soil mechanics and present situation of centrifugal modelling test[J]. Rock and Soil Mechanics, 1988, 9(4): 23-30. (in Chinese)
    [6]
    侯瑜京. 土工离心机振动台及其试验技术[J]. 中国水利水电科学研究院学报, 2006, 4(1): 15-22.

    HOU Yujing. Centrifuge shakers and testing technique[J]. Journal of China Institute of Water Resources and Hydropower Research, 2006, 4(1): 15-22. (in Chinese)
    [7]
    NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(1): 1-21. doi: 10.1631/jzus.A1300217
    [8]
    ZIENKIEWICZ O C, CHANG C T, BETTESS P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils[J]. Géotechnique, 1980, 30(4): 385-395. doi: 10.1680/geot.1980.30.4.385
    [9]
    TAYLOR R. Geotechnical centrifuge technology[C]// Glasgow. UK: Blackie Academic & Professional, 1995.
    [10]
    陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. http://www.cgejournal.com/cn/article/id/14444

    CHEN Yunmin, HAN Chao, LING Daosheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) http://www.cgejournal.com/cn/article/id/14444
    [11]
    章为民, 赖忠中, 徐光明. 电液式土工离心机振动台的研制[J]. 水利水运工程学报, 2002(1): 63-66.

    ZHANG Weimin, LAI Zhongzhong, XU Guangming. Development of an electrohydraulic shake table for the centrifuge[J]. Hydro-Science and Engineering, 2002(1): 63-66. (in Chinese)
    [12]
    LAMBE P C. Dynamic Centrifuge Modelling of a Horizontal Sand Stratum[D]. Cambridge: Massachusetts Institute of Technology, 1982.
    [13]
    HUSHMAND B, SCOTT R F, CROUSE C B. Centrifuge liquefaction tests in a laminar box[J]. Géotechnique, 1988, 38(2): 253-262. doi: 10.1680/geot.1988.38.2.253
    [14]
    黄茂松, 边学成, 陈育民, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2020, 53(8): 64-86.

    HUANG Maosong, BIAN Xuecheng, CHEN Yumin, et al. Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2020, 53(8): 64-86. (in Chinese)
    [15]
    YE B, YE G L, ZHANG F, et al. Experiment and numerical simulation of repeated liquefaction-consolidation of sand[J]. Soils and Foundations, 2007, 47(3): 547-558. doi: 10.3208/sandf.47.547
    [16]
    WANG R, ZHANG J M, WANG G. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59: 54-66. doi: 10.1016/j.compgeo.2014.02.008
    [17]
    QIU Z J, ELGAMAL A. Numerical simulations of LEAP centrifuge tests for seismic response of liquefiable sloping ground[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106378. doi: 10.1016/j.soildyn.2020.106378
    [18]
    BOULAANGER R W, ZIOTOPOULOU K. PM4Sand (Version 3): A Sand Plasticity Model for Earthquake Engineering Applications[R]. Davis : Department of Civil and Environmental Engineering, University of California, 2015.
    [19]
    IAI S, TOBITA T, OZUTSUMI O, et al. Dilatancy of granular materials in a strain space multiple mechanism model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(3): 360-392. doi: 10.1002/nag.899
    [20]
    MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272. doi: 10.1680/geot.1997.47.2.255
    [21]
    UEDA K, IAI S. Numerical predictions for centrifuge model tests of a liquefiable sloping ground using a strain space multiple mechanism model based on the finite strain theory[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 771-792. doi: 10.1016/j.soildyn.2016.11.015
    [22]
    KUTTER B L, CAREY T J, HASHIMOTO T, et al. LEAP-GWU-2015 experiment specifications, results, and comparisons[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 616-628. doi: 10.1016/j.soildyn.2017.05.018
    [23]
    ZEGHAL M, GOSWAMI N, MANZARI M, et al. Discrepancy metrics and sensitivity analysis of dynamic soil response[C]// Geotechnical Earthquake Engineering and Soil Dynamics V. Austin, 2018.
    [24]
    ZHOU Y G, MENG D, MA Q A, et al. Frequency response function and shaking control of the ZJU-400 geotechnical centrifuge shaker[J]. International Journal of Physical Modelling in Geotechnics, 2020, 20(2): 97-117. doi: 10.1680/jphmg.19.00029
    [25]
    ZHOU Y G, LIANG T, CHEN Y M, et al. A two-dimensional miniature cone penetration test system for centrifuge modelling[C]// Proceeding of 8th Physical Modelling in Geotechnics. London, 2014.
    [26]
    周燕国, 摄宇, 陈捷, 等. 超重力离心模型试验土体弹性波速监测与表征[J]. 土木工程学报, 2020, 53(6): 90-96, 121.

    ZHOU Yanguo, SHE Yu, CHEN Jie, et al. Measurement and characterization of elastic wave velocity of soil in hypergravity centrifuge model test[J]. China Civil Engineering Journal, 2020, 53(6): 90-96, 121. (in Chinese)
    [27]
    MASON H B, GALLANT A, HUTABARAT D, et al. The 28 September 2018 M7.5 Palu-Donggala, Indonesia Earthquake[R]. Geotechnical Extreme Events Reconnaissance, 2019: 1-77.
    [28]
    WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631. doi: 10.1680/geot.2003.53.7.619
    [29]
    杨玉生, 刘小生, 李小泉, 等. 固结应力状态对超深厚覆盖层深埋砂土动强度参数的影响[J]. 水利学报, 2016, 47(4): 518-526.

    YANG Yusheng, LIU Xiaosheng, LI Xiaoquan, et al. Effects of effective confining stresses on cyclic resistance ratio of deep buried sands in deep alluvial soils[J]. Journal of Hydraulic Engineering, 2016, 47(4): 518-526. (in Chinese)
    [30]
    蔡正银, 吴诗阳, 武颖利, 等. 高地震烈度区深厚覆盖砂层液化研究[J]. 岩土工程学报, 2020, 42(3): 405-412. doi: 10.11779/CJGE202003001

    CAI Zhengyin, WU Shiyang, WU Yingli, et al. Liquefaction of deep overburden layers in zones with high earthquake intensity[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 405-412. (in Chinese) doi: 10.11779/CJGE202003001
    [31]
    IAI S, TOBITA T, NAKAHARA T. Generalised scaling relations for dynamic centrifuge tests[J]. Géotechnique, 2005, 55(5): 355-362. doi: 10.1680/geot.2005.55.5.355
    [32]
    ZHOU Y G, MA Q, LIU K, et al. Centrifuge model tests at Zhejiang University for LEAP-Asia-2019 and validation of the generalized scaling law[J]. Soil Dynamics and Earthquake Engineering, 2021, 144: 106660. doi: 10.1016/j.soildyn.2021.106660
    [33]
    蔡袁强, 于玉贞, 袁晓铭, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2016, 49(5): 9-30.

    CAI Yuanqiang, YU Yuzhen, YUAN Xiaoming, et al. Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2016, 49(5): 9-30. (in Chinese)
    [34]
    袁晓铭, 秦志光, 刘荟达, 等. 砾性土层液化的触发条件[J]. 岩土工程学报, 2018, 40(5): 777-785. doi: 10.11779/CJGE201805001

    YUAN Xiaoming, QIN Zhiguang, LIU Huida, et al. Necessary trigger conditions of liquefaction for gravelly soil layers[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 777-785. (in Chinese) doi: 10.11779/CJGE201805001
    [35]
    陈国兴, 孙田, 王炳辉, 等. 循环荷载作用下饱和砂砾土的破坏机理与动强度[J]. 岩土工程学报, 2015, 37(12): 2140-2148. doi: 10.11779/CJGE201512002

    CHEN Guoxing, SUN Tian, WANG Binghui, et al. Undrained cyclic failure mechanisms and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140-2148. (in Chinese) doi: 10.11779/CJGE201512002
    [36]
    ZHOU Y G, XIA P, LING D S, et al. Liquefaction case studies of gravelly soils during the 2008 Wenchuan earthquake[J]. Engineering Geology, 2020, 274: 105691.
    [37]
    YE B, NI X Q, HUANG Y, et al. Unified modeling of soil behaviors before/after flow liquefaction[J]. Computers and Geotechnics, 2018, 102: 125-135.
    [38]
    KUTTER B L, WILSON D W. Physical modelling of dynamic behavior of soil-foundation-superstructure systems[J]. International Journal of Physical Modelling in Geotechnics, 2006, 6(1): 1-12.
    [39]
    唐贞云, 洪越, 李振宝. 振动台子结构试验方法实现的韧性防灾需求与其关键问题[J]. 地震研究, 2020, 43(3): 478-484, 602.

    TANG Zhenyun, HONG Yue, LI Zhenbao. Shaking table RTHS needs for disaster resilience and its key scientific issues in RTHS implementation[J]. Journal of Seismological Research, 2020, 43(3): 478-484, 602. (in Chinese)
    [40]
    王涛, 潘鹏. 子结构混合试验方法研究与应用[J]. 工程力学, 2018, 35(2): 1-12.

    WANG Tao, PAN Peng. Study and application of substructure online hybrid test method[J]. Engineering Mechanics, 2018, 35(2): 1-12. (in Chinese)
  • Related Articles

    [1]FEI Jianbo, TANG Hao, JIE Yuxin, CHEN Xiangsheng. Scaling laws for quasi-static granular sand at critical state[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1831-1839. DOI: 10.11779/CJGE20230435
    [2]GUAN Longhua, LU Qiang, ZHAO Fengkui, ZHANG Dezhi, WANG Yubing. Scaling laws for centrifuge modelling of explosion-induced cratering in sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1462-1470. DOI: 10.11779/CJGE20230751
    [3]JIANG Mingjie, JI Enyue, WANG Tiancheng, LI Shuya, ZHU Jungao, MEI Guoxiong. Experimental study on laws of scale effects of shear strength of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 855-861. DOI: 10.11779/CJGE20220102
    [4]ZUO Yong-zhen, CHENG Zhan-lin, PAN Jia-jun, ZHOU Yue-feng, ZHAO Na. Large-scale triaxial wetting deformation tests and laws of gravelly soil core materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 37-42. DOI: 10.11779/CJGE2020S2007
    [5]DENG Yi-bing, YANG Yan-cheng, SHI Dan-da, LIU Wen-bai. Refinement and application of variable particle-size methods in 3D discrete element modelling for large-scale problems[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 62-70. DOI: 10.11779/CJGE201701004
    [6]LI Run, JIAN Wen-bin, KANG Rong-tao. Vibration attenuation laws for reinforcing filled ground by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 246-250.
    [7]WANG Qiguo. Major geological problems concerning hydropower development of Tiger Leaping Gorge of Jinsha River[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1292-1298.
    [8]GE Xiurun. Deformation control law of rock fatigue failure,real-time X-ray CT scan of geotechnical testing,and new method of stability analysis of slopes and dam foundations[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 1-20.
    [9]XU Wenjie, HU Ruilin, YUE Zhongqi, TAN Rujiao, LI Renjiang, ZENG Ruyi. Numerical simulation on stability of right bank slope of Longpan in Tiger-Leaping gorge area[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1996-2004.
    [10]Zhu Weixin. Application of Centrifuge to Nodel Crackingof Earth-Rockfill Dam Core[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 82-95.
  • Cited by

    Periodical cited type(1)

    1. 龙潇,孙锐,郑桐. 基于卷积神经网络的液化预测模型及可解释性分析. 岩土力学. 2024(09): 2741-2753 .

    Other cited types(0)

Catalog

    Article views (488) PDF downloads (174) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return