Citation: | FEI Jianbo, TANG Hao, JIE Yuxin, CHEN Xiangsheng. Scaling laws for quasi-static granular sand at critical state[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1831-1839. DOI: 10.11779/CJGE20230435 |
[1] |
RENDULIC L. Das Grundgesetz der Tonmechanik und sein experimenteller Beweis[J]. Bauingenieur, 1937, 18: 31/32.
|
[2] |
HENKEL D J. The relationships between the effective stresses and water content in saturated clays[J]. Géotechnique, 1960, 10(2): 41-54. doi: 10.1680/geot.1960.10.2.41
|
[3] |
SCHOFIELD A N, WROTH P. Critical State Soil Mechanics[M]. New York: McGraw-Hill, 1968.
|
[4] |
MUIR WOOD D. Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press, 1990.
|
[5] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
|
[6] |
JEFFERIES M G. Nor-Sand: a simple critical state model for sand[J]. Géotechnique, 1993, 43(1): 91-103. doi: 10.1680/geot.1993.43.1.91
|
[7] |
KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design[R]. Electric Power Research Inst. , Palo Alto, CA (USA); Cornell Univ. , Ithaca, NY (USA). Geotechnical Engineering Group, 1990.
|
[8] |
FU Z, CHEN S, PENG C. Modeling cyclic behavior of rockfill materials in a framework of generalized plasticity[J]. International Journal of Geomechanics, 2014, 14(2): 191-204. doi: 10.1061/(ASCE)GM.1943-5622.0000302
|
[9] |
LADE P V. Assessment of test data for selection of 3-D failure criterion for sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(4): 307-333. doi: 10.1002/nag.471
|
[10] |
BARAN O, ERTAŞ D, HALSEY T C, et al. Velocity correlations in dense gravity-driven granular chute flow[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 74(5 pt 1): 051302.
|
[11] |
IORDANOFF I, KHONSARI M M. Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime[J]. J Trib, 2004, 126(1): 137-145. doi: 10.1115/1.1633575
|
[12] |
SAVAGE S B. The mechanics of rapid granular flows[J]. Advances in Applied Mechanics, 1984, 24: 289-366.
|
[13] |
ANCEY C, COUSSOT P, EVESQUE P. A theoretical framework for granular suspensions in a steady simple shear flow[J]. Journal of Rheology, 1999, 43(6): 1673-1699. doi: 10.1122/1.551067
|
[14] |
POULIQUEN O, FORTERRE Y. Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane[J]. Journal of Fluid Mechanics, 2002, 453: 133-151. doi: 10.1017/S0022112001006796
|
[15] |
WANG C, DENG A, TAHERI A. Three-dimensional discrete element modeling of direct shear test for granular rubber–sand[J]. Computers and Geotechnics, 2018, 97: 204-216. doi: 10.1016/j.compgeo.2018.01.014
|
[16] |
DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2005, 72(2 pt 1): 021309.
|
[17] |
SAVAGE S B, SAYED M. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell[J]. Journal of Fluid Mechanics, 1984, 142: 391-430. doi: 10.1017/S0022112084001166
|
[18] |
GDR M D. On dense granular flows[J]. The European Physical Journal E, 2004, 14: 341-365. doi: 10.1140/epje/i2003-10153-0
|
[19] |
FORTERRE Y, POULIQUEN O. Flows of dense granular media[J]. Annu Rev Fluid Mech, 2008, 40: 1-24. doi: 10.1146/annurev.fluid.40.111406.102142
|
[20] |
KAMRIN K, KOVAL G. Nonlocal constitutive relation for steady granular flow[J]. Phys Rev Lett, 2012, 108(17): 178301. doi: 10.1103/PhysRevLett.108.178301
|
[21] |
HENANN D L, KAMRIN K. A predictive, size-dependent continuum model for dense granular flows[J]. Proc Natl Acad Sci USA, 2013, 110(17): 6730-6735. doi: 10.1073/pnas.1219153110
|
[22] |
BOUZID M, TRULSSON M, CLAUDIN P, et al. Nonlocal rheology of granular flows across yield conditions[J]. Phys Rev Lett, 2013, 111(23): 238301. doi: 10.1103/PhysRevLett.111.238301
|
[23] |
BOUZID M, IZZET A, TRULSSON M, et al. Non-local rheology in dense granular flows[J]. The European Physical Journal E, 2015, 38(11): 1-15.
|
[24] |
JOP P, FORTERRE Y, POULIQUEN O. A constitutive law for dense granular flows[J]. Nature, 2006, 441(7094): 727-730. doi: 10.1038/nature04801
|
[25] |
ALSHIBLI K A, CIL M B. Influence of particle morphology on the friction and dilatancy of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3): 04017118. doi: 10.1061/(ASCE)GT.1943-5606.0001841
|
[26] |
AL-SHIBLI K, MACARI E J, STURE S. Digital imaging techniques for assessment of homogeneity of granular materials[J]. Transportation Research Record, 1996, 1526(1): 121-128. doi: 10.1177/0361198196152600115
|
[27] |
JOHNSON P C, JACKSON R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing[J]. Journal of fluid Mechanics, 1987, 176: 67-93. doi: 10.1017/S0022112087000570
|
[28] |
JOHNSON P C, NOTT P, JACKSON R. Frictional-collisional equations of motion for participate flows and their application to chutes[J]. Journal of Fluid Mechanics, 1990, 210: 501-535. doi: 10.1017/S0022112090001380
|
[29] |
XIAO Y, LIU H, LIU H, et al. Strength and dilatancy behaviors of dense modeled rockfill material in general stress space[J]. International Journal of Geomechanics, 2016, 16(5): 04016015. doi: 10.1061/(ASCE)GM.1943-5622.0000645
|
[30] |
姜景山, 左永振, 程展林, 等. 围压和密度对粗粒料临界状态力学特性的影响[J]. 长江科学院院报, 2021, 38(5): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202105018.htm
JIANG Jingshan, ZUO Yongzhen, CHENG Zhanlin, et al. Effects of confining pressure and density on mechanical properties of coarse granular material under critical state[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 94-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202105018.htm
|
[31] |
XIAO Y, LIU H, DING X, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 04015031. doi: 10.1061/(ASCE)GM.1943-5622.0000538
|
[32] |
XIAO Y, LIU H, CHEN Y, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. doi: 10.1061/(ASCE)EM.1943-7889.0000702
|