• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHEN Jia-yi, CHEN Qian, KU Meng, WANG Li-zhong. Numerical simulation of progressive failure of sensitive clay slopes using CEL method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2297-2303. DOI: 10.11779/CJGE202212017
Citation: SHEN Jia-yi, CHEN Qian, KU Meng, WANG Li-zhong. Numerical simulation of progressive failure of sensitive clay slopes using CEL method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2297-2303. DOI: 10.11779/CJGE202212017

Numerical simulation of progressive failure of sensitive clay slopes using CEL method

More Information
  • Received Date: November 10, 2021
  • Available Online: December 13, 2022
  • In order to reveal the mechanism of the progressive failure of sensitive clay slopes, the Saint-Jude landslide in Canada is used as a research case, and the Eulerian approach under the coupled Eulerian-Lagrangian (CEL) framework is used to carry out the numerical simulation. The research results show that: (1) The topography of the Saint-Jude landslide obtained by the CEL numerical simulation is basically consistent with the field surveyed one. (2) The CEL numerical simulation method can effectively simulate the sensitive clay landslides from the initial instability failure to the subsequent progressive failure, and the progressive failure mode of the Saint-Jude landslide can be truly simulated. (3) The CEL numerical simulation method effectively captures the characteristics of shear stress during the progressive failure of the sensitive clay slope, thereby revealing the mechanism of progressive failure of sensitive clay slopes.
  • [1]
    LOCAT A, LOCAT P, DEMERS D, et al. The Saint-Jude landslide of 10 May 2010, Quebec, Canada: investigation and characterization of the landslide and its failure mechanism[J]. Canadian Geotechnical Journal, 2017, 54(10): 1357–1374. doi: 10.1139/cgj-2017-0085
    [2]
    LINDBERG F, OLVMO M, BERGDAHL K. Mapping areas of potential slope failures in cohesive soils using a shadow-casting algorithm – A case study from SW Sweden[J]. Computers and Geotechnics, 2011, 38(6): 791–799. doi: 10.1016/j.compgeo.2011.05.003
    [3]
    GEERTSEMA M, TORRANCE J K. Quick clay from the mink creek landslide near terrace, British Columbia: geotechnical properties, mineralogy, and geochemistry[J]. Canadian Geotechnical Journal, 2005, 42(3): 907–918. doi: 10.1139/t05-028
    [4]
    SKEMPTON A W. Long-term stability of clay slopes[J]. Géotechnique, 1964, 14(2): 77–102. doi: 10.1680/geot.1964.14.2.77
    [5]
    TERZAGHI K, PECK R. Soil Mechanics in Engineering Practice[M]. New York: John Wiley and Sons, Inc, 1948.
    [6]
    LOCAT A, LEROUEIL S, BERNANDER S, et al. Progressive failures in eastern Canadian and Scandinavian sensitive clays[J]. Canadian Geotechnical Journal, 2011, 48(11): 1696–1712. doi: 10.1139/t11-059
    [7]
    BERNANDER S, KULLINGSJÖ A, GYLLAND A S, et al. Downhill progressive landslides in long natural slopes: triggering agents and landslide phases modeled with a finite difference method[J]. Canadian Geotechnical Journal, 2016, 53(10): 1565–1582. doi: 10.1139/cgj-2015-0651
    [8]
    LOCAT A, JOSTAD H P, LEROUEIL S. Numerical modeling of progressive failure and its implications for spreads in sensitive clays[J]. Canadian Geotechnical Journal, 2013, 50(9): 961–978. doi: 10.1139/cgj-2012-0390
    [9]
    QUINN P E, DIEDERICHS M S, ROWE R K, et al. A new model for large landslides in sensitive clay using a fracture mechanics approach[J]. Canadian Geotechnical Journal, 2011, 48(8): 1151–1162. doi: 10.1139/t11-025
    [10]
    QUINN P E, DIEDERICHS M S, ROWE R K, et al. Development of progressive failure in sensitive clay slopes[J]. Canadian Geotechnical Journal, 2012, 49(7): 782–795. doi: 10.1139/t2012-034
    [11]
    PALMER A, RICE J. The growth of slip surfaces in the progressive failure of over-consolidated clay[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1973, 332(1591): 527–548.
    [12]
    ZHANG X, WANG L, KRABBENHOFT K, et al. A case study and implication: particle finite element modelling of the 2010 Saint-Jude sensitive clay landslide[J]. Landslides, 2020, 17(5): 1117–1127. doi: 10.1007/s10346-019-01330-4
    [13]
    SHAN Z G, ZHANG W C, WANG D, et al. Numerical investigations of retrogressive failure in sensitive clays: revisiting 1994 Sainte-Monique slide, Quebec[J]. Landslides, 2021, 18(4): 1327–1336. doi: 10.1007/s10346-020-01567-4
    [14]
    TRAPPER P A, PUZRIN A M, GERMANOVICH L N. Effects of shear band propagation on early waves generated by initial breakoff of tsunamigenic landslides[J]. Marine Geology, 2015, 370: 99–112. doi: 10.1016/j.margeo.2015.10.014
    [15]
    DEY R, HAWLADER B, PHILLIPS R, et al. Large deformation finite-element modelling of progressive failure leading to spread in sensitive clay slopes[J]. Géotechnique, 2015, 65(8): 657–668. doi: 10.1680/geot.14.P.193
    [16]
    DEY R, HAWLADER B, PHILLIPS R, et al. Numerical modeling of combined effects of upward and downward propagation of shear bands on stability of slopes with sensitive clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(15): 2076–2099. doi: 10.1002/nag.2522
    [17]
    BENSON D J, OKAZAWA S. Contact in a multi-material Eulerian finite element formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39/40/41): 4277–4298.
    [18]
    BENSON D J. A multi-material Eulerian formulation for the efficient solution of impact and penetration problems[J]. Computational Mechanics, 1995, 15(6): 558–571. doi: 10.1007/BF00350268
  • Cited by

    Periodical cited type(3)

    1. 谭智勇,王超林,龙安发. 外部水源作用下岩石液氮冻结试验研究. 岩土工程学报. 2024(02): 415-425 . 本站查看
    2. 杨帅,毛海涛,刘畅,王晓菊. 中高强混凝土抗压强度与气孔分布特征关系模型研究. 长江科学院院报. 2024(04): 194-202 .
    3. 林键,杨溢,曹广勇,刘洋,邵晚行. 静水压作用下砂岩渗透特性及渗透率模型改进. 地下空间与工程学报. 2024(03): 776-787 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return