Citation: | SHEN Jia-yi, CHEN Qian, KU Meng, WANG Li-zhong. Numerical simulation of progressive failure of sensitive clay slopes using CEL method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2297-2303. DOI: 10.11779/CJGE202212017 |
[1] |
LOCAT A, LOCAT P, DEMERS D, et al. The Saint-Jude landslide of 10 May 2010, Quebec, Canada: investigation and characterization of the landslide and its failure mechanism[J]. Canadian Geotechnical Journal, 2017, 54(10): 1357–1374. doi: 10.1139/cgj-2017-0085
|
[2] |
LINDBERG F, OLVMO M, BERGDAHL K. Mapping areas of potential slope failures in cohesive soils using a shadow-casting algorithm – A case study from SW Sweden[J]. Computers and Geotechnics, 2011, 38(6): 791–799. doi: 10.1016/j.compgeo.2011.05.003
|
[3] |
GEERTSEMA M, TORRANCE J K. Quick clay from the mink creek landslide near terrace, British Columbia: geotechnical properties, mineralogy, and geochemistry[J]. Canadian Geotechnical Journal, 2005, 42(3): 907–918. doi: 10.1139/t05-028
|
[4] |
SKEMPTON A W. Long-term stability of clay slopes[J]. Géotechnique, 1964, 14(2): 77–102. doi: 10.1680/geot.1964.14.2.77
|
[5] |
TERZAGHI K, PECK R. Soil Mechanics in Engineering Practice[M]. New York: John Wiley and Sons, Inc, 1948.
|
[6] |
LOCAT A, LEROUEIL S, BERNANDER S, et al. Progressive failures in eastern Canadian and Scandinavian sensitive clays[J]. Canadian Geotechnical Journal, 2011, 48(11): 1696–1712. doi: 10.1139/t11-059
|
[7] |
BERNANDER S, KULLINGSJÖ A, GYLLAND A S, et al. Downhill progressive landslides in long natural slopes: triggering agents and landslide phases modeled with a finite difference method[J]. Canadian Geotechnical Journal, 2016, 53(10): 1565–1582. doi: 10.1139/cgj-2015-0651
|
[8] |
LOCAT A, JOSTAD H P, LEROUEIL S. Numerical modeling of progressive failure and its implications for spreads in sensitive clays[J]. Canadian Geotechnical Journal, 2013, 50(9): 961–978. doi: 10.1139/cgj-2012-0390
|
[9] |
QUINN P E, DIEDERICHS M S, ROWE R K, et al. A new model for large landslides in sensitive clay using a fracture mechanics approach[J]. Canadian Geotechnical Journal, 2011, 48(8): 1151–1162. doi: 10.1139/t11-025
|
[10] |
QUINN P E, DIEDERICHS M S, ROWE R K, et al. Development of progressive failure in sensitive clay slopes[J]. Canadian Geotechnical Journal, 2012, 49(7): 782–795. doi: 10.1139/t2012-034
|
[11] |
PALMER A, RICE J. The growth of slip surfaces in the progressive failure of over-consolidated clay[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1973, 332(1591): 527–548.
|
[12] |
ZHANG X, WANG L, KRABBENHOFT K, et al. A case study and implication: particle finite element modelling of the 2010 Saint-Jude sensitive clay landslide[J]. Landslides, 2020, 17(5): 1117–1127. doi: 10.1007/s10346-019-01330-4
|
[13] |
SHAN Z G, ZHANG W C, WANG D, et al. Numerical investigations of retrogressive failure in sensitive clays: revisiting 1994 Sainte-Monique slide, Quebec[J]. Landslides, 2021, 18(4): 1327–1336. doi: 10.1007/s10346-020-01567-4
|
[14] |
TRAPPER P A, PUZRIN A M, GERMANOVICH L N. Effects of shear band propagation on early waves generated by initial breakoff of tsunamigenic landslides[J]. Marine Geology, 2015, 370: 99–112. doi: 10.1016/j.margeo.2015.10.014
|
[15] |
DEY R, HAWLADER B, PHILLIPS R, et al. Large deformation finite-element modelling of progressive failure leading to spread in sensitive clay slopes[J]. Géotechnique, 2015, 65(8): 657–668. doi: 10.1680/geot.14.P.193
|
[16] |
DEY R, HAWLADER B, PHILLIPS R, et al. Numerical modeling of combined effects of upward and downward propagation of shear bands on stability of slopes with sensitive clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(15): 2076–2099. doi: 10.1002/nag.2522
|
[17] |
BENSON D J, OKAZAWA S. Contact in a multi-material Eulerian finite element formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39/40/41): 4277–4298.
|
[18] |
BENSON D J. A multi-material Eulerian formulation for the efficient solution of impact and penetration problems[J]. Computational Mechanics, 1995, 15(6): 558–571. doi: 10.1007/BF00350268
|
1. |
谭智勇,王超林,龙安发. 外部水源作用下岩石液氮冻结试验研究. 岩土工程学报. 2024(02): 415-425 .
![]() | |
2. |
杨帅,毛海涛,刘畅,王晓菊. 中高强混凝土抗压强度与气孔分布特征关系模型研究. 长江科学院院报. 2024(04): 194-202 .
![]() | |
3. |
林键,杨溢,曹广勇,刘洋,邵晚行. 静水压作用下砂岩渗透特性及渗透率模型改进. 地下空间与工程学报. 2024(03): 776-787 .
![]() |