• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIN Gong-feng, ZHOU Hai-zuo, ZHANG Wen-liang, ZHENG Gang, YANG Xin-yu, YU Xiao-xuan, XU Shi-qian. Influences of column cap on progressive failure and stability characteristics of column-supported embankments[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 63-67. DOI: 10.11779/CJGE2022S1012
Citation: XIN Gong-feng, ZHOU Hai-zuo, ZHANG Wen-liang, ZHENG Gang, YANG Xin-yu, YU Xiao-xuan, XU Shi-qian. Influences of column cap on progressive failure and stability characteristics of column-supported embankments[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 63-67. DOI: 10.11779/CJGE2022S1012

Influences of column cap on progressive failure and stability characteristics of column-supported embankments

More Information
  • Received Date: September 27, 2022
  • Available Online: February 06, 2023
  • The design of cap in rigid columns, which has been widely used in engineering practice, can avoid the stress concentration at the column top and enhance the performance of composite foundation. However, the effects of the cap on the stability and progressive failure of rigid column-supported embankment is relatively lacking. A finite difference numerical model is established to simulate the behavior of rigid columns with cap. The influences of the cap on the stress and failure mode of the columns under embankment loads are analyzed, and those of different cap sizes on the stability of embankment are compared. The results show that the tensile stress and the bending moment decrease significantly when cap is used, and the critical failure mode is bending failure. Compared with that of the case without cap, the continuous failure of the case with cap is more obvious. An increase in the cap size can effectively reduce the loads on the columns and improve the stability of the embankment, but there is a risk of cap damage. Therefore, it is necessary to estimate the bearing capacity of the cap in the design.
  • [1]
    郑刚, 周海祚. 复合地基极限承载力与稳定研究进展[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(7): 661–673. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202007001.htm

    ZHENG Gang, ZHOU Hai-zuo. State-of-the-art review of ultimate bearing capacity and stability of composite foundations[J]. Journal of Tianjin University (Science and Technology), 2020, 53(7): 661–673. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202007001.htm
    [2]
    ZHENG G, YU X X, ZHOU H Z, et al. Stability analysis of stone column-supported and geosynthetic-reinforced embankments on soft ground[J]. Geotextiles and Geomembranes, 2020, 48(3): 349–356. doi: 10.1016/j.geotexmem.2019.12.006
    [3]
    HAN J, PARSONS RJ, SHETH AR, HUANG J. Factors of safety against deep-seated failure of embankments over deep mixed columns[C]// Proceedings of the Deep Mixing 2005 Conference, Stockholm, Sweden, 2005(1): 231–236.
    [4]
    HAN J, CHAI J C, LESHCHINSKY D, et al. Evaluation of deep-seated slope stability of embankments over deep mixed foundations[C]// GeoSupport 2004: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, 2004: 954–954.
    [5]
    ZHOU H Z, XU H J, YU X X, et al. Evaluation of the bending failure of columns under an embankment loading[J]. International Journal of Geomechanics, 2021, 21(7): 04021112. doi: 10.1061/(ASCE)GM.1943-5622.0002057
    [6]
    ZHOU H Z, ZHENG G, LIU J F, et al. Performance of embankments with rigid columns embedded in an inclined underlying stratum: centrifuge and numerical modelling[J]. Acta Geotechnica, 2019, 14(5): 1571–1584. doi: 10.1007/s11440-019-00825-7
    [7]
    KITAZUME M, MARUYAMA K. Internal stability of group column type deep mixing improved ground under embankment loading[J]. Soils and Foundations, 2007, 47(3): 437–455. doi: 10.3208/sandf.47.437
    [8]
    YU X X, ZHENG G, ZHOU H Z, et al. Influence of geosynthetic reinforcement on the progressive failure of rigid columns under an embankment load[J]. Acta Geotechnica, 2021, 16(9): 3005–3012. doi: 10.1007/s11440-021-01160-6
    [9]
    ZHENG G, YU X X, ZHOU H Z, et al. Influence of geosynthetic reinforcement on the stability of an embankment with rigid columns embedded in an inclined underlying stratum[J]. Geotextiles and Geomembranes, 2021, 49(1): 180–187. doi: 10.1016/j.geotexmem.2020.10.002
    [10]
    ZHENG G, YANG X Y, ZHOU H Z, et al. Numerical modeling of progressive failure of rigid piles under embankment load[J]. Canadian Geotechnical Journal, 2019, 56(1): 23–34. doi: 10.1139/cgj-2017-0613
  • Cited by

    Periodical cited type(11)

    1. 宋洋,马旭琪,赵常青,谢志辉,王富成,牛凯. 隐伏非贯通软弱夹层岩质边坡剪切蠕变特征及稳定性研究. 岩土工程学报. 2024(04): 755-763 . 本站查看
    2. 郭汝涛,赖登甲,李升连,但路昭,李韦剑,张国华,臧熙玮. 考虑结构面蠕变特征的隧道围岩长期变形研究. 安全与环境工程. 2024(04): 99-108 .
    3. 李剑,颜良宇,於开炳,黎明,颜廷舟,赵嘉. 硅质板岩剪切蠕变特性及边坡变形机理研究. 中外公路. 2024(04): 29-36 .
    4. 杨启帆,胡斌,王泽祺,崔凯,王宏芮,崔喜兴. 周期扰动作用下软弱夹层剪切蠕变特性研究. 金属矿山. 2024(11): 62-69 .
    5. 麻景瑞,董元滨. 顺向节理髙陡岩质边坡破坏机理研究. 铁道勘察. 2023(04): 114-121 .
    6. 罗泽军,张清照,石振明,潘青,俞松波. 考虑表面形貌特征的岩体结构面蠕变特性. 地球科学. 2022(12): 4484-4497 .
    7. 陈国庆,简大华,陈宇航,万亿,林之恒. 不同含水率冻融后红砂岩剪切蠕变特性. 岩土工程学报. 2021(04): 661-669 . 本站查看
    8. 杨福卿,时旭阳,张传伟,才庆祥. 布沼坝露天矿南帮西段边坡滑移分析与治理. 露天采矿技术. 2021(02): 81-84 .
    9. 陈志,贾朝军,雷明锋. 软弱结构面岩体剪切蠕变试验研究. 铁道科学与工程学报. 2021(07): 1817-1827 .
    10. 韩世亮,陈泰霖. 坝基岩体软弱夹层饱水劣化剪切蠕变特性及本构模型. 中国测试. 2021(09): 41-46+132 .
    11. 王强,冯强. 采用预制结构面试件模拟含天然结构面辉绿岩的实验. 现代矿业. 2020(12): 72-76 .

    Other cited types(9)

Catalog

    Article views (152) PDF downloads (25) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return