• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Yuanhao, ZHANG Zhichao, XIAO Yang, LI Linhang. Non-isothermal coupled effects of bound water content and permeability in sand and clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 375-384. DOI: 10.11779/CJGE20221153
Citation: HUANG Yuanhao, ZHANG Zhichao, XIAO Yang, LI Linhang. Non-isothermal coupled effects of bound water content and permeability in sand and clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 375-384. DOI: 10.11779/CJGE20221153

Non-isothermal coupled effects of bound water content and permeability in sand and clay

More Information
  • Received Date: September 18, 2022
  • Available Online: February 05, 2024
  • The couplings among characteristics of bound water, permeability of soils and temperature largely determine the thermal-hydraulic-mechanical behavior of soils. To study the bound water content and the permeability of soils under non-isothermal conditions, the temperature-controlled laboratory measurements of the bound water content in saturated sand, clay and sand-clay mixtures, combined with the corresponding permeability tests, are carried out in this study based on the bulk density method. It is shown that temperature elevation leads to remarkable decreases of the bound water content, largely depending on the soil particle size and the clay content. The bound water contents under different temperatures measured for the packed soil samples with low and high clay contents are obviously higher and lower than those measured for the samples of dispersed soil particles, respectively, due to the interactions and structures among soil particles. The increases of soil permeability with the temperature elevation are also observed in the tests, which are highly related to the heating-induced and clay-content-dependent decreases of the free-water kinematic viscosity and the bound water content. The thermally induced changes of permeability can be overestimated for the soils with low clay contents and underestimated for those with high clay contents if ignoring the effects of bound water.
  • [1]
    STEPKOWSKA E T, PÉREZ-RODRı́GUEZ J L, MAQUEDA C, et al. Variability in water sorption and in particle thickness of standard smectites[J]. Applied Clay Science, 2004, 24(3/4): 185-199.
    [2]
    LIU K Q, JIN Z J, ZENG L B, et al. Determination of clay bound water in shales from NMR signals: the fractal theory[J]. Energy & Fuels, 2021, 35(22): 18406-18413.
    [3]
    DRNEVICH P V, TIDFORS M, SÄLLFORS G. Temperature effect on preconsolidation pressure[J]. Geotechnical Testing Journal, 1989, 12(1): 93. doi: 10.1520/GTJ10679J
    [4]
    白冰, 苏钟琴, 杨海朋. 一种饱和粉质黏土的热固结特性试验研究[J]. 岩土力学, 2012, 33(1): 12-16, 23.

    BAI Bing, SU Zhongqin, YANG Haipeng. Experimental study of thermal consolidation of a saturated silty clay[J]. Rock and Soil Mechanics, 2012, 33(1): 12-16, 23. (in Chinese)
    [5]
    DELAGE P, SULTAN N, CUI Y J. On the thermal consolidation of Boom clay[J]. Canadian Geotechnical Journal, 2000, 37(2): 343-354. doi: 10.1139/t99-105
    [6]
    KONG G Q, FANG J C, LV Z X, et al. Effects of pile and soil properties on thermally induced mechanical responses of energy piles[J]. Computers and Geotechnics, 2023, 154: 105176. doi: 10.1016/j.compgeo.2022.105176
    [7]
    孙军杰, 田文通, 刘琨, 等. 基于泊肃叶定律的土体渗透系数估算模型[J]. 岩石力学与工程学报, 2016, 35(1): 150-161.

    SUN Junjie, TIAN Wentong, LIU Kun, et al. Estimation model of soil permeability coefficient based on Poiseuille's law[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1): 150-161. (in Chinese)
    [8]
    HABIBAGAHI K. Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 7(1): 14-34.
    [9]
    PUPPALA A J, PUNTHUTAECHA K, VANAPALLI S K. Soil-water characteristic curves of stabilized expansive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6): 736-751. doi: 10.1061/(ASCE)1090-0241(2006)132:6(736)
    [10]
    MESRI G, OLSON R E. Mechanisms controlling the permeability of clays[J]. Clays and Clay Minerals, 1971, 19(3): 151-158. doi: 10.1346/CCMN.1971.0190303
    [11]
    KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al. Temperature effects on undrained shear characteristics of clay[J]. Soils and Foundations, 1995, 35(1): 147-162. doi: 10.3208/sandf1972.35.147
    [12]
    MORITZ L. Geotechnical Properties of Clay at Elevated Temperature[R]. Linkioping: Suwdish Geotechnical Institute, 1995.
    [13]
    MORIN R, SILVA A J. The effects of high pressure and high temperature on some physical properties of ocean sediments[J]. Journal of Geophysical Research, 1984, 89(B1): 511. doi: 10.1029/JB089iB01p00511
    [14]
    肖树芳, 房后国, 王清. 软土中结合水与固结、蠕变行为[J]. 工程地质学报, 2014, 22(4): 531-535.

    XIAO Shufang, FANG Houguo, WANG Qing. The bound water, consolidation and creep behavior of soft soil[J]. Journal of Engineering Geology, 2014, 22(4): 531-535. (in Chinese)
    [15]
    CHEN J, ANANDARAJAH A, INYANG H. Pore fluid properties and compressibility of kaolinite[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(9): 798-807. doi: 10.1061/(ASCE)1090-0241(2000)126:9(798)
    [16]
    LI S, WANG C M, ZHANG X W, et al. Classification and characterization of bound water in marine mucky silty clay[J]. Journal of Soils and Sediments, 2019, 19(5): 2509-2519. doi: 10.1007/s11368-019-02242-5
    [17]
    WANG H K, QIAN H, GAO Y Y, et al. Classification and physical characteristics of bound water in loess and its main clay minerals[J]. Engineering Geology, 2020, 265: 105394. doi: 10.1016/j.enggeo.2019.105394
    [18]
    MORTEZA ZEINALI S, ABDELAZIZ S L. Thermal consolidation theory[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(1): 04020147. doi: 10.1061/(ASCE)GT.1943-5606.0002423
    [19]
    张志超, 程晓辉. 饱和土非等温固结和不排水剪切的热力学本构模型[J]. 岩土工程学报, 2013, 35(7): 1297-1306. http://www.cgejournal.com/cn/article/id/15110

    ZHANG Zhichao, CHENG Xiaohui. Thermodynamic constitutive model for non-isothermal consolidation and undrained shear behaviors of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1297-1306. (in Chinese) http://www.cgejournal.com/cn/article/id/15110
    [20]
    王媛, 施斌, 高磊, 等. 黏性土渗透性温度效应实验研究[J]. 工程地质学报, 2010, 18(3): 351-356.

    WANG Yuan, SHI Bin, GAO Lei, et al. Laboratory tests for temperature effects of clayey soil permeability[J]. Journal of Engineering Geology, 2010, 18(3): 351-356. (in Chinese)
    [21]
    TENG Y, LI Z, ZHENG W, et al. Role of Temperature on Threshold Gradient and Permeability of non-Darcian Flow in Sand and Clay Mixtures[C]// Brussels: InterPore 2020, 2020.
    [22]
    GATMIRI B, DELAGE P. A formulation of fully coupled thermal-hydraulic-mechanical behaviour of saturated porous media—numerical approach[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(3): 199-225. doi: 10.1002/(SICI)1096-9853(199703)21:3<199::AID-NAG865>3.0.CO;2-M
    [23]
    李生林. 土中结合水译文集[M]. 北京: 地质出版社, 1982.

    LI Shenglin. . The Translations of Soil Bound Water[M]. Beijing: Geological Publishing House, 1982. (in Chinese)
    [24]
    LEE D J, LEE S F. Measurement of bound water content in sludge: the use of differential scanning calorimetry (DSC)[J]. Journal of Chemical Technology AND Biotechnology, 1995, 62(4): 359-365. doi: 10.1002/jctb.280620408
    [25]
    LI Y L, WANG T H, SU L J. Determination of bound water content of loess soils by isothermal adsorption and thermogravimetric analysis[J]. Soil Science, 2015, 180(3): 90-96. doi: 10.1097/SS.0000000000000121
    [26]
    宋功保, 张建洪, 郭颖, 等. 海泡石中水的红外光谱及其结构稳定性的指示作用[J]. 岩石矿物学杂志, 1999, 18(1): 80-86.

    SONG Gongbao, ZHANG Jianhong, GUO Ying, et al. Infrared spectrum of water in sepiolite and its role of indicating structural stability[J]. Acta Petrrologica et Mineralogica, 1999, 18(1): 80-86. (in Chinese)
    [27]
    胡湘锋. 黏土中水的形态对其工程性质的影响研究[D]. 广州: 华南理工大学, 2017.

    HU Xiangfeng. A Study on the Influence of Water's State in Clay on Its Engineering Properties[D]. Guangzhou: South China University of Technology, 2017. (in Chinese)
    [28]
    De WIT C T, ARENS P L, Moisture content and density of some clay minerals and some remarks on the hydration pattern of clay[C]//Transactions of the International Congress of Soil Science. Amsterdam, 1950.
    [29]
    MACKENZIE R C. Density of water sorbed on montmorillonite[J]. Nature, 1958, 181(4605): 334.
    [30]
    焦文灿. 广西北部湾海积软土结合水特性及蠕变释水机制研究[D]. 南宁: 广西大学, 2021.

    JIAO Wencan. Reasaerch on the Characterristics of Bound Water and Wate Release Mechansim of Creep of Marine Soft Soil in the Bbeibu Gulf of Guangxi[D]. Nanning: Guangxi University, 2021. (in Chinese)
    [31]
    HIEBL M, MAKSYMIW R. Anomalous temperature dependence of the thermal expansion of proteins[J]. Biopolymers, 1991, 31(2): 161-167. doi: 10.1002/bip.360310204
    [32]
    KATOPODES N D. Free-Surface Flow: Environmental Fluid Mechanics[M]. Oxford: Butterworth-Heinemann, 2019.
  • Related Articles

    [1]YU Yan-yan, DING Hai-ping, LIU Qi-fang. Effects of impedance ratio between basin sediment and surrounding rock on seismic ground motions and basin-induced Rayleigh waves[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 667-677. DOI: 10.11779/CJGE202004009
    [2]LI Rui-shan, YUAN Xiao-ming. Theoretical solution of site amplification coefficient[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1066-1073. DOI: 10.11779/CJGE201906010
    [3]CHEN Guo-xing, LIU Xue-ning, ZHU Jiao, JIN Dan-dan, XU Han-gang. Spatial variation of predominant periods of site and amplifications of peak ground accelerations for deep sediment layers: case study of Suzhou City[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 996-1004. DOI: 10.11779/CJGE201906002
    [4]GAO Yu-feng. Analytical models and amplification effects of seismic wave propagation in canyon sites[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 1-25. DOI: 10.11779/CJGE201901001
    [5]ZHOU Yan-guo, TAN Xiao-ming, CHEN Jie, PEI Xiang-jun, CHEN Yun-min. Observations and analyses of site amplification effects of deep liquefiable soil deposits by geotechnical downhole array[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1282-1291. DOI: 10.11779/CJGE201707015
    [6]JIANG Zhi-jun, HU Jin-jun, ZHANG Qi, XIE Li-li. Site amplification factor model for Sichuan region considering nonlinear soil effects[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1650-1659. DOI: 10.11779/CJGE201609012
    [7]LI Ping, BO Jing-shan, LI Xiao-bo, XIAO Rui-jie. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 362-369. DOI: 10.11779/CJGE201602022
    [8]ZHU Jiao, CHEN Guo-xing, XU Han-gang. Effect of seismic bedrock interface depth on surface motion parameters of deep site[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2079-2087. DOI: 10.11779/CJGE201511020
    [9]CHEN Guoxing, ZHUANG Haiyang, XU Ye. A study on influence of excavated shallow tunnel on design parameters of ground motion in the soft site[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 739-744.
    [10]GAO Guangyun, YUE Zhongqi, Tham L. G., QIU Chang. Theoretical analysis of unusual vibration amplification in barrier protected zone[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 565-568.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (245) PDF downloads (77) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return