Citation: | LIN Yuan-xiang, ZHENG Jun-jie, HOU Ru-yi, FANG Hao. Lower shakedown limits of layered road structures under moving harmonic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2026-2034. DOI: 10.11779/CJGE202211008 |
[1] |
ZHUANG Y, WANG K Y, LI H X. Shakedown solutions for ballasted track structure under multiple uniform loads[J]. Transportation Geotechnics, 2020, 22: 100298.
|
[2] |
王娟, 余海岁. 道路安定理论的进展及其应用[J]. 岩土力学, 2014, 35(5): 1255–1262, 1268. doi: 10.16285/j.rsm.2014.05.026
WANG Juan, YU Hai-sui. Development and its application of shakedown theory for road pavements[J]. Rock and Soil Mechanics, 2014, 35(5): 1255–1262, 1268. (in Chinese) doi: 10.16285/j.rsm.2014.05.026
|
[3] |
MELAN E. Der spannungsgudstand eines Henky-Mises schen kontinuums bei verlandicher belastung[J]. Sitzungberichte der Ak Wissenschaften Wie (Ser. 2A), 1938, 147: 73.
|
[4] |
KOITER W T. General theorems for elastic-plastic solids[M]// Progress in Solid Mechanics. Amsterdam: North-Holland Publishing Company, 1960.
|
[5] |
王永刚, 钱建固. 移动荷载下三维半空间动力安定性下限分析[J]. 岩土力学, 2016, 37(增刊1): 570–576. doi: 10.16285/j.rsm.2016.S1.074
WANG Yong-gan, QIAN Jian-gu. Dynamic shakedown lower-bound analysis of three-dimensional half-space under moving load[J]. Rock and Soil Mechanics, 2016, 37(S1): 570–576. (in Chinese) doi: 10.16285/j.rsm.2016.S1.074
|
[6] |
SHARP R W, BOOKER J R. Shakedown of pavements under moving surface loads[J]. Journal of Transportation Engineering, ASCE, 1984, 110(1): 1–14.
|
[7] |
SHIAU S H. Numerical Methods for Shakedown Analysis of Pavements Under Moving Surface Loads[D]. Newcastle: University of Newcastle, 2001.
|
[8] |
YU H S. Three-dimensional analytical solutions for shakedown of cohesive-frictional materials under moving surface loads[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461(2059): 1951–1964.
|
[9] |
YU H S, WANG J. Three-dimensional shakedown solutions for cohesive-frictional materials under moving surface loads[J]. International Journal of Solids and Structures, 2012, 49(26): 3797–3807.
|
[10] |
WANG J, YU H S. Shakedown analysis for design of flexible pavements under moving loads[J]. Road Materials and Pavement Design, 2013, 14(3): 703–722.
|
[11] |
WANG J, YU H S. Three-dimensional shakedown solutions for anisotropic cohesive-frictional materials under moving surface loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 331–348.
|
[12] |
LIU S, WANG J, YU H S, et al. Shakedown solutions for pavements with materials following associated and non-associated plastic flow rules[J]. Computers and Geotechnics, 2016, 78: 218–226.
|
[13] |
QIAN J G, WANG Y G, LIN Z G, et al. Dynamic shakedown analysis of flexible pavement under traffic moving loading[J]. Procedia Engineering, 2016, 143: 1293–1300.
|
[14] |
QIAN J G, WANG Y G, WANG J, et al. The influence of traffic moving speed on shakedown limits of flexible pavements[J]. International Journal of Pavement Engineering, 2019, 20(2): 233–244.
|
[15] |
ZHUANG Y, WANG K Y. Three-dimensional shakedown analysis of ballasted railway structures under moving surface loads with different load distributions[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 296–300.
|
[16] |
ZHUANG Y, WANG K Y, LI H X, et al. Application of three-dimensional shakedown solutions in railway structure under multiple Hertz loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 328–338.
|
[17] |
LU Z, QIAN J G, ZHOU R Y. Shakedown analysis of flexible pavement on saturated subgrade under moving traffic loading[C]// Advances in Environmental Vibration and Transportation Geodynamics, 2020. Singapore.
|
[18] |
BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482–1498.
|
[19] |
WANG J, YU H S. Residual stresses and shakedown in cohesive-frictional half-space under moving surface loads[J]. Geomechanics and Geoengineering, 2013, 8(1): 1–14.
|
[20] |
LU J F, JENG D S. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures, 2007, 44(2): 573–586.
|
[21] |
HALLONBORG U. Super ellipse as tyre-ground contact area[J]. Journal of Terramechanics, 1996, 33(3): 125–132.
|
[22] |
XU B, LU J F, WANG J H. Dynamic response of a layered water-saturated half space to a moving load[J]. Computers and Geotechnics, 2008, 35(1): 1–10.
|
[23] |
李广信. 高等土力学[M]. 2版. 北京: 清华大学出版社, 2016.
LI Guang-xin. Advanced Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2016. (in Chinese)
|
[24] |
ACHENBACH J D, THAU S A. Wave propagation in elastic solids[J]. Journal of Applied Mechanics, 1974, 41(2): 544.
|
[25] |
周仁义, 钱建固, 黄茂松. 不平顺路面的车辆动载诱发饱和地基的动应力响应[J]. 振动与冲击, 2016, 35(11): 93-101, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm
ZHOU Ren-yi, QIAN Jian-gu, HUANG Mao-song. Influences of vehicle dynamic load on dynamic stress in saturated poro-elastic ground[J]. Journal of Vibration and Shock, 2016, 35(11): 93–101, 122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm
|
[26] |
公路工程技术标准: JTG B01—2014[S]. 北京: 人民交通出版社, 2015.
Technical Standard of Highway Engineering: JTG B01—2014[S]. Beijing: China Communications Press, 2015. (in Chinese)
|
1. |
贺伟明,石胜伟,蔡强,梁炯. 基于上下限解的膨胀土边坡首次滑动区域分析. 水文地质工程地质. 2025(01): 104-112 .
![]() | |
2. |
范文晓. 南阳膨胀土浸水变形特性及微观结构研究. 建筑科学. 2025(01): 126-135 .
![]() | |
3. |
沈旺. 云南省膨胀土边坡稳定性计算及成因分析. 科学技术创新. 2024(01): 159-162 .
![]() | |
4. |
LI Tianguo,KONG Lingwei,GUO Aiguo,YAN Junbiao. Swelling pressure evolution characterization of strong expansive soil considering the influence of reserved expansion deformation. Journal of Mountain Science. 2024(01): 252-270 .
![]() |
|
5. |
彭宇,张虎元,周光平,谭煜. 酒精湿化法调配压实膨润土缓冲回填材料含水率研究. 岩土力学. 2024(01): 235-244 .
![]() | |
6. |
李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 .
![]() | |
7. |
廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展. 岩土工程学报. 2024(12): 2465-2475 .
![]() | |
8. |
梁维云,韦昌富,张芹,秦刘洋,文松松,颜荣涛. 膨润土吸湿过程中膨胀力演化及水分分布特征. 岩土工程学报. 2023(02): 283-291 .
![]() | |
9. |
冯岩岩,杨婷,查文华,杨成艳. 压实高庙子膨润土中水运移时效性试验研究. 东华理工大学学报(自然科学版). 2023(02): 186-193 .
![]() | |
10. |
马婧,陈永贵,刘聪,叶为民,王琼. 化学作用下压实膨润土膨胀力响应机制研究进展. 岩土工程学报. 2023(10): 2042-2051 .
![]() | |
11. |
李涛,黄晓冀,刘波,张荣辉,李幻. 基于颗粒流的膨胀土膨胀力时程细观机制研究. 广西大学学报(自然科学版). 2023(05): 1091-1103 .
![]() | |
12. |
刘万林,张芹,卢有谦,吴广水,于海浩. 白泥改良膨胀土液塑限和膨胀力试验探究. 河南工程学院学报(自然科学版). 2023(04): 22-28 .
![]() | |
13. |
李昆鹏,陈永贵,叶为民,崔玉军. 高压实膨润土孔隙结构特征研究进展. 岩土工程学报. 2022(03): 399-408 .
![]() | |
14. |
叶为民,许利波,王琼,陈永贵,陈宝. 考虑侧壁摩阻的围岩裂隙中膨润土-砂混合物侵入过程及其模型. 岩土工程学报. 2022(04): 613-621 .
![]() | |
15. |
贺勇,卢普怀,滕继东,叶为民. 化学溶液作用下基于压实膨润土孔隙结构演化的土水特征模型研究. 工程地质学报. 2022(02): 338-346 .
![]() | |
16. |
董洋,张文,李大伟,姚兰,初文磊,王海东,殷晓东. 柔性垂直防渗技术膨润土-黏土密封材料防渗性能研究. 环境工程技术学报. 2022(03): 824-833 .
![]() | |
17. |
屈祥. 湘西弱膨胀土的膨胀变形时程特性研究. 公路与汽运. 2022(04): 58-62 .
![]() | |
18. |
贺伟明,石胜伟,蔡强,梁炯. 考虑膨胀作用对抗剪强度影响的膨胀土边坡稳定性分析. 岩石力学与工程学报. 2022(S2): 3524-3533 .
![]() | |
19. |
屈祥. 湘西膨胀土膨胀变形及膨胀力特性试验研究. 湖南交通科技. 2022(04): 40-44 .
![]() | |
20. |
刘樟荣,叶为民,张召,崔玉军,王琼,陈永贵. 膨润土颗粒混合物的堆积性质与水-力特性研究进展. 工程地质学报. 2020(02): 294-305 .
![]() | |
21. |
蒋超,屈祥. 膨胀土膨胀时程特性试验及特征曲线参数确定. 土木工程与管理学报. 2020(03): 79-84 .
![]() | |
22. |
刘樟荣,崔玉军,叶为民,王琼,张召,陈永贵. 缓冲/回填材料——膨润土颗粒及其混合物研究进展. 岩土工程学报. 2020(08): 1401-1410 .
![]() |