• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIN Yuan-xiang, ZHENG Jun-jie, HOU Ru-yi, FANG Hao. Lower shakedown limits of layered road structures under moving harmonic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2026-2034. DOI: 10.11779/CJGE202211008
Citation: LIN Yuan-xiang, ZHENG Jun-jie, HOU Ru-yi, FANG Hao. Lower shakedown limits of layered road structures under moving harmonic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2026-2034. DOI: 10.11779/CJGE202211008

Lower shakedown limits of layered road structures under moving harmonic loads

More Information
  • Received Date: September 06, 2021
  • Available Online: December 08, 2022
  • The shakedown limits of layered road structures subjected to a moving harmonic load are studied. The inverse Fourier transform and the numerical integration are used to obtain the dynamic responses of a three-dimensional layered road structure in the time and space domain. Considering the effective stress field of saturated subsoil instead of the total stress field, the existing static shakedown theorem and the solving method for the shakedown limits are improved, and the concept of the effective shakedown limit is proposed and compared with the solving method for the shakedown limits considering the total stress. In addition, different effective internal friction angles are selected for the saturated soil layer, and the influences of load-moving speed, load frequency and pavement stiffness on the effective shakedown limit and effective critical depth of the layered road structure are studied respectively. The results show that there is a significant difference between the effective shakedown limits and the shakedown limits obtained by the solving method for the shakedown limits considering the total stress. Moreover, the effective critical depth is deeper than that obtained by the solving method for the shakedown limits considering the total stress when the load-moving speed is relatively high. The proposed method for solving the effective shakedown limits is more suitable for the design and safety assessment of layered road structures containing saturated soil layers.
  • [1]
    ZHUANG Y, WANG K Y, LI H X. Shakedown solutions for ballasted track structure under multiple uniform loads[J]. Transportation Geotechnics, 2020, 22: 100298.
    [2]
    王娟, 余海岁. 道路安定理论的进展及其应用[J]. 岩土力学, 2014, 35(5): 1255–1262, 1268. doi: 10.16285/j.rsm.2014.05.026

    WANG Juan, YU Hai-sui. Development and its application of shakedown theory for road pavements[J]. Rock and Soil Mechanics, 2014, 35(5): 1255–1262, 1268. (in Chinese) doi: 10.16285/j.rsm.2014.05.026
    [3]
    MELAN E. Der spannungsgudstand eines Henky-Mises schen kontinuums bei verlandicher belastung[J]. Sitzungberichte der Ak Wissenschaften Wie (Ser. 2A), 1938, 147: 73.
    [4]
    KOITER W T. General theorems for elastic-plastic solids[M]// Progress in Solid Mechanics. Amsterdam: North-Holland Publishing Company, 1960.
    [5]
    王永刚, 钱建固. 移动荷载下三维半空间动力安定性下限分析[J]. 岩土力学, 2016, 37(增刊1): 570–576. doi: 10.16285/j.rsm.2016.S1.074

    WANG Yong-gan, QIAN Jian-gu. Dynamic shakedown lower-bound analysis of three-dimensional half-space under moving load[J]. Rock and Soil Mechanics, 2016, 37(S1): 570–576. (in Chinese) doi: 10.16285/j.rsm.2016.S1.074
    [6]
    SHARP R W, BOOKER J R. Shakedown of pavements under moving surface loads[J]. Journal of Transportation Engineering, ASCE, 1984, 110(1): 1–14.
    [7]
    SHIAU S H. Numerical Methods for Shakedown Analysis of Pavements Under Moving Surface Loads[D]. Newcastle: University of Newcastle, 2001.
    [8]
    YU H S. Three-dimensional analytical solutions for shakedown of cohesive-frictional materials under moving surface loads[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461(2059): 1951–1964.
    [9]
    YU H S, WANG J. Three-dimensional shakedown solutions for cohesive-frictional materials under moving surface loads[J]. International Journal of Solids and Structures, 2012, 49(26): 3797–3807.
    [10]
    WANG J, YU H S. Shakedown analysis for design of flexible pavements under moving loads[J]. Road Materials and Pavement Design, 2013, 14(3): 703–722.
    [11]
    WANG J, YU H S. Three-dimensional shakedown solutions for anisotropic cohesive-frictional materials under moving surface loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 331–348.
    [12]
    LIU S, WANG J, YU H S, et al. Shakedown solutions for pavements with materials following associated and non-associated plastic flow rules[J]. Computers and Geotechnics, 2016, 78: 218–226.
    [13]
    QIAN J G, WANG Y G, LIN Z G, et al. Dynamic shakedown analysis of flexible pavement under traffic moving loading[J]. Procedia Engineering, 2016, 143: 1293–1300.
    [14]
    QIAN J G, WANG Y G, WANG J, et al. The influence of traffic moving speed on shakedown limits of flexible pavements[J]. International Journal of Pavement Engineering, 2019, 20(2): 233–244.
    [15]
    ZHUANG Y, WANG K Y. Three-dimensional shakedown analysis of ballasted railway structures under moving surface loads with different load distributions[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 296–300.
    [16]
    ZHUANG Y, WANG K Y, LI H X, et al. Application of three-dimensional shakedown solutions in railway structure under multiple Hertz loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 328–338.
    [17]
    LU Z, QIAN J G, ZHOU R Y. Shakedown analysis of flexible pavement on saturated subgrade under moving traffic loading[C]// Advances in Environmental Vibration and Transportation Geodynamics, 2020. Singapore.
    [18]
    BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482–1498.
    [19]
    WANG J, YU H S. Residual stresses and shakedown in cohesive-frictional half-space under moving surface loads[J]. Geomechanics and Geoengineering, 2013, 8(1): 1–14.
    [20]
    LU J F, JENG D S. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures, 2007, 44(2): 573–586.
    [21]
    HALLONBORG U. Super ellipse as tyre-ground contact area[J]. Journal of Terramechanics, 1996, 33(3): 125–132.
    [22]
    XU B, LU J F, WANG J H. Dynamic response of a layered water-saturated half space to a moving load[J]. Computers and Geotechnics, 2008, 35(1): 1–10.
    [23]
    李广信. 高等土力学[M]. 2版. 北京: 清华大学出版社, 2016.

    LI Guang-xin. Advanced Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2016. (in Chinese)
    [24]
    ACHENBACH J D, THAU S A. Wave propagation in elastic solids[J]. Journal of Applied Mechanics, 1974, 41(2): 544.
    [25]
    周仁义, 钱建固, 黄茂松. 不平顺路面的车辆动载诱发饱和地基的动应力响应[J]. 振动与冲击, 2016, 35(11): 93-101, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm

    ZHOU Ren-yi, QIAN Jian-gu, HUANG Mao-song. Influences of vehicle dynamic load on dynamic stress in saturated poro-elastic ground[J]. Journal of Vibration and Shock, 2016, 35(11): 93–101, 122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm
    [26]
    公路工程技术标准: JTG B01—2014[S]. 北京: 人民交通出版社, 2015.

    Technical Standard of Highway Engineering: JTG B01—2014[S]. Beijing: China Communications Press, 2015. (in Chinese)
  • Cited by

    Periodical cited type(22)

    1. 贺伟明,石胜伟,蔡强,梁炯. 基于上下限解的膨胀土边坡首次滑动区域分析. 水文地质工程地质. 2025(01): 104-112 .
    2. 范文晓. 南阳膨胀土浸水变形特性及微观结构研究. 建筑科学. 2025(01): 126-135 .
    3. 沈旺. 云南省膨胀土边坡稳定性计算及成因分析. 科学技术创新. 2024(01): 159-162 .
    4. LI Tianguo,KONG Lingwei,GUO Aiguo,YAN Junbiao. Swelling pressure evolution characterization of strong expansive soil considering the influence of reserved expansion deformation. Journal of Mountain Science. 2024(01): 252-270 .
    5. 彭宇,张虎元,周光平,谭煜. 酒精湿化法调配压实膨润土缓冲回填材料含水率研究. 岩土力学. 2024(01): 235-244 .
    6. 李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 . 本站查看
    7. 廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展. 岩土工程学报. 2024(12): 2465-2475 . 本站查看
    8. 梁维云,韦昌富,张芹,秦刘洋,文松松,颜荣涛. 膨润土吸湿过程中膨胀力演化及水分分布特征. 岩土工程学报. 2023(02): 283-291 . 本站查看
    9. 冯岩岩,杨婷,查文华,杨成艳. 压实高庙子膨润土中水运移时效性试验研究. 东华理工大学学报(自然科学版). 2023(02): 186-193 .
    10. 马婧,陈永贵,刘聪,叶为民,王琼. 化学作用下压实膨润土膨胀力响应机制研究进展. 岩土工程学报. 2023(10): 2042-2051 . 本站查看
    11. 李涛,黄晓冀,刘波,张荣辉,李幻. 基于颗粒流的膨胀土膨胀力时程细观机制研究. 广西大学学报(自然科学版). 2023(05): 1091-1103 .
    12. 刘万林,张芹,卢有谦,吴广水,于海浩. 白泥改良膨胀土液塑限和膨胀力试验探究. 河南工程学院学报(自然科学版). 2023(04): 22-28 .
    13. 李昆鹏,陈永贵,叶为民,崔玉军. 高压实膨润土孔隙结构特征研究进展. 岩土工程学报. 2022(03): 399-408 . 本站查看
    14. 叶为民,许利波,王琼,陈永贵,陈宝. 考虑侧壁摩阻的围岩裂隙中膨润土-砂混合物侵入过程及其模型. 岩土工程学报. 2022(04): 613-621 . 本站查看
    15. 贺勇,卢普怀,滕继东,叶为民. 化学溶液作用下基于压实膨润土孔隙结构演化的土水特征模型研究. 工程地质学报. 2022(02): 338-346 .
    16. 董洋,张文,李大伟,姚兰,初文磊,王海东,殷晓东. 柔性垂直防渗技术膨润土-黏土密封材料防渗性能研究. 环境工程技术学报. 2022(03): 824-833 .
    17. 屈祥. 湘西弱膨胀土的膨胀变形时程特性研究. 公路与汽运. 2022(04): 58-62 .
    18. 贺伟明,石胜伟,蔡强,梁炯. 考虑膨胀作用对抗剪强度影响的膨胀土边坡稳定性分析. 岩石力学与工程学报. 2022(S2): 3524-3533 .
    19. 屈祥. 湘西膨胀土膨胀变形及膨胀力特性试验研究. 湖南交通科技. 2022(04): 40-44 .
    20. 刘樟荣,叶为民,张召,崔玉军,王琼,陈永贵. 膨润土颗粒混合物的堆积性质与水-力特性研究进展. 工程地质学报. 2020(02): 294-305 .
    21. 蒋超,屈祥. 膨胀土膨胀时程特性试验及特征曲线参数确定. 土木工程与管理学报. 2020(03): 79-84 .
    22. 刘樟荣,崔玉军,叶为民,王琼,张召,陈永贵. 缓冲/回填材料——膨润土颗粒及其混合物研究进展. 岩土工程学报. 2020(08): 1401-1410 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return