• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Ling, XU Ze-yu, YAO Pan, ZHAO Ming-hua, CHEN Long. Experimental study and discrete element simulation on interface friction of geo-encased stone columns[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 72-81. DOI: 10.11779/CJGE202201006
Citation: ZHANG Ling, XU Ze-yu, YAO Pan, ZHAO Ming-hua, CHEN Long. Experimental study and discrete element simulation on interface friction of geo-encased stone columns[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 72-81. DOI: 10.11779/CJGE202201006

Experimental study and discrete element simulation on interface friction of geo-encased stone columns

More Information
  • Received Date: March 22, 2021
  • Available Online: September 22, 2022
  • The friction characteristics of the column-soil interface is important to the load transfer mechanism of geo-encased stone columns. In this study, model tests are conducted using a large direct shear device to investigate the effects of the normal stress, water content of soft soil, relative density of stone materials and geosynthetic on the characteristics of the column-soil interface. On this basis, the discrete element method is adopted to study the influences of geosynthetic application, aperture ratio of geosynthetic and geosynthetic stiffness. The results indicate the interfacial shear strength increases with the increase of the normal stress, relative density of stone materials, aperture ratio of geosynthetic and geosynthetic siffness, and deceases with the increase of the water content in soft soil. The interfacial friction coefficient decreases with the increase of the normal stress and water content in soft soil, and increases with the increase of the relative density of stone materials and the aperture ratio of geosynthetics. The influences of geosynthetic stiffness are insignificant to the interfacial friction angle.
  • [1]
    ALMEIDA M S S, HOSSEINPOUR I, RICCIO M, et al. Behavior of geotextile-encased granular columns supporting test embankment on soft deposit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(3): 04014116. doi: 10.1061/(ASCE)GT.1943-5606.0001256
    [2]
    SCHNAID F, WINTER D, SILVA A E F, et al. Geotextile encased columns (GEC) used as pressure-relief system. Instrumented bridge abutment case study on soft soil[J]. Geotextiles and Geomembranes, 2017, 45(3): 227–236. doi: 10.1016/j.geotexmem.2017.02.003
    [3]
    NAGULA S S, NGUYEN D M, GRABE J. Numerical modelling and validation of geosynthetic encased columns in soft soils with installation effect[J]. Geotextiles and Geomembranes, 2018, 46(6): 790–800. doi: 10.1016/j.geotexmem.2018.07.011
    [4]
    CASTRO J, SAGASETA C. Deformation and consolidation around encased stone columns[J]. Geotextiles and Geomembranes, 2011, 29(3): 268–276. doi: 10.1016/j.geotexmem.2010.12.001
    [5]
    PULKO B, MAJES B, LOGAR J. Geosynthetic-encased stone columns: analytical calculation model[J]. Geotextiles and Geomembranes, 2011, 29(1): 29–39. doi: 10.1016/j.geotexmem.2010.06.005
    [6]
    HAN J, GABR M A. Numerical analysis of geosynthetic- reinforced and pile-supported earth platforms over soft soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 44–53. doi: 10.1061/(ASCE)1090-0241(2002)128:1(44)
    [7]
    HUANG J, HAN J, OZTOPRAK S. Coupled mechanical and hydraulic modeling of geosynthetic-reinforced column- supported embankments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(8): 1011–1021. doi: 10.1061/(ASCE)GT.1943-5606.0000026
    [8]
    曹文贵, 赵聚才, 贺敏, 等. 柔性基础下筋箍碎石桩复合地基变形机理及其沉降分析方法[J]. 岩土工程学报, 2014, 36(5): 818–826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405005.htm

    CAO Wen-gui, ZHAO Ju-cai, HE Min. Deformation mechanism and settlement analysis method of reinforcedhoop-gravel-pile composite ground under flexible foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 818–826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405005.htm
    [9]
    ZHANG L, ZHAO M H, SHI C J, et al. Settlement calculation of composite foundation reinforced with stone columns[J]. International Journal of Geomechanics, 2013, 13(3): 248–256. doi: 10.1061/(ASCE)GM.1943-5622.0000212
    [10]
    ZHANG L, ZHAO M H. Deformation analysis of geotextile-encased stone columns[J]. International Journal of Geomechanics, 2015, 15(3): 04014053. doi: 10.1061/(ASCE)GM.1943-5622.0000389
    [11]
    ZHOU Y, KONG G Q, YANG Q, et al. Deformation analysis of geosynthetic-encased stone column using cavity expansion models with emphasis on boundary condition[J]. Geotextiles and Geomembranes, 2019, 47(6): 831–842. doi: 10.1016/j.geotexmem.2019.103498
    [12]
    WU C S, HONG Y S. The behavior of a laminated reinforced granular column[J]. Geotextiles and Geomembranes, 2008, 26(4): 302–316. doi: 10.1016/j.geotexmem.2007.12.003
    [13]
    DEB K, MOHAPATRA S R. Analysis of stone column-supported geosynthetic-reinforced embankments[J]. Applied Mathematical Modelling, 2013, 37(5): 2943–2960. doi: 10.1016/j.apm.2012.07.002
    [14]
    ZHOU Y, KONG G Q. Deformation analysis of geosynthetic-encased stone column–supported embankment considering radial bulging[J]. International Journal of Geomechanics, 2019, 19(6): 04019057. doi: 10.1061/(ASCE)GM.1943-5622.0001426
    [15]
    高明军, 刘汉龙, 左威龙. 格栅碎石桩技术及现场试验研究[J]. 西部探矿工程, 2008, 20(12): 11–14. doi: 10.3969/j.issn.1004-5716.2008.12.004

    GAO Ming-jun, LIU Han-long, ZUO Wei-long. The technique of geogrid stone cased pile and field experiment[J]. West-China Exploration Engineering, 2008, 20(12): 11–14. (in Chinese) doi: 10.3969/j.issn.1004-5716.2008.12.004
    [16]
    赵明华, 顾美湘, 张玲, 等. 竖向土工加筋体对碎石桩承载变形影响的模型试验研究[J]. 岩土工程学报, 2014, 36(9): 1587–1593. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409006.htm

    ZHAO Ming-hua, GU Mei-xiang, ZHANG Ling, et al. Model tests on influence of vertical geosynthetic-encasement on performance of stone columns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1587–1593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409006.htm
    [17]
    OUYANG F, ZHANG J J, LIAO W M, et al. Characteristics of the stress and deformation of geosynthetic-encased stone column composite ground based on large-scale model tests[J]. Geosynthetics International, 2016: 1–13.
    [18]
    MIRANDA M, DA COSTA A, CASTRO J, et al. Influence of geotextile encasement on the behaviour of stone columns: Laboratory study[J]. Geotextiles and Geomembranes, 2017, 45(1): 14–22. doi: 10.1016/j.geotexmem.2016.08.004
    [19]
    GHAZAVI M, NAZARI A J. Bearing capacity of geosynthetic encased stone columns[J]. Geotextiles and Geomembranes, 2013, 38: 26–36. doi: 10.1016/j.geotexmem.2013.04.003
    [20]
    ALI K, SHAHU J T, SHARMA K G. Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement[J]. Geosynthetics International, 2014, 21(2): 103–118. doi: 10.1680/gein.14.00002
    [21]
    陈建峰, 王波, 魏静, 等. 加筋碎石桩复合地基路堤模型试验[J]. 中国公路学报, 2015, 28(9): 1–8. doi: 10.3969/j.issn.1001-7372.2015.09.001

    CHEN Jian-feng, WANG Bo, WEI Jing, et al. Model test of embankment on composite foundation reinforced with geosynthetic-encased stone columns[J]. China Journal of Highway and Transport, 2015, 28(9): 1–8. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.09.001
    [22]
    欧阳芳, 张建经, 付晓, 等. 包裹碎石桩承载特性试验研究[J]. 岩土力学, 2016, 37(7): 1929–1936. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607013.htm

    OUYANG Fang, ZHANG Jian-jing, FU Xiao, et al. Experimental analysis of bearing behavior of geosynthetic encased stone columns[J]. Rock and Soil Mechanics, 2016, 37(7): 1929–1936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607013.htm
    [23]
    张玲, 徐泽宇, 赵明华. 循环荷载作用下筋箍碎石桩复合地基工作性状试验研究[J]. 岩土工程学报, 2020, 42(12): 2198–2205. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012006.htm

    ZHANG Ling, XU Ze-yu, ZHAO Ming-hua. Experimental research on behaviors of geogrid-encased stone column-improved composite foundation under cyclic loads[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2198–2205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012006.htm
    [24]
    LIU C N, HO Y H, HUANG J W. Large scale direct shear tests of soil/PET-yarn geogrid interfaces[J]. Geotextiles and Geomembranes, 2009, 27(1): 19–30. doi: 10.1016/j.geotexmem.2008.03.002
    [25]
    徐超, 孟凡祥. 剪切速率和材料特性对筋-土界面抗剪强度的影响[J]. 岩土力学, 2010, 31(10): 3101–3106. doi: 10.3969/j.issn.1000-7598.2010.10.012

    XU Chao, MENG Fan-xiang. Effects of shear rate and material properties on shear strength of geosynthetic-soil interface[J]. Rock and Soil Mechanics, 2010, 31(10): 3101–3106. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.10.012
    [26]
    凌天清, 周滨, 吴春波, 等. 筋土界面摩擦特性影响因素分析[J]. 交通运输工程学报, 2009, 9(5): 7–12. doi: 10.3321/j.issn:1671-1637.2009.05.002

    LING Tian-qing, ZHOU Bin, WU Chun-bo, et al. Study of influence factors on tendons-soil interface characteristic[J]. Journal of Traffic and Transportation Engineering, 2009, 9(5): 7–12. (in Chinese) doi: 10.3321/j.issn:1671-1637.2009.05.002
    [27]
    杨广庆, 李广信, 张保俭. 土工格栅界面摩擦特性试验研究[J]. 岩土工程学报, 2006, 28(8): 948–952. doi: 10.3321/j.issn:1000-4548.2006.08.004

    YANG Guang-qing, LI Guang-xin, ZHANG Bao-jian. Experimental studies on interface friction characteristics of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 948–952. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.08.004
    [28]
    闫澍旺, 林澍, 贾沼霖, 等. 海洋土与钢桩界面剪切强度的大型直剪试验研究[J]. 岩土工程学报, 2018, 40(3): 495–501. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803016.htm

    YAN Shu-wang, LIN Shu, JIA Zhao-lin, et al. Large-scale direct shear tests on shear strength of interface between marine soil and steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 495–501. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803016.htm
    [29]
    王家全, 周健, 黄柳云, 等. 土工合成材料大型直剪界面作用宏细观研究[J]. 岩土工程学报, 2013, 35(5): 908–915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305018.htm

    WANG Jia-quan, ZHOU Jian, HUANG Liu-yun, et al. Macroscopic and mesoscopic studies of interface interaction on geosynthetics by use of large direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 908–915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305018.htm
    [30]
    王协群, 张俊峰, 邹维列, 等. 格栅-土界面抗剪强度模型及其影响因素[J]. 土木工程学报, 2013, 46(4): 141–149. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201304020.htm

    WANG Xie-qun, ZHANG Jun-feng, ZOU Wei-lie, et al. A shear strength model of geogrid-soil interface and its influence factors[J]. China Civil Engineering Journal, 2013, 46(4): 141–149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201304020.htm
    [31]
    GU M, HAN J, ZHAO M H. Three-dimensional discrete- element method analysis of stresses and deformations of a single geogrid-encased stone column[J]. International Journal of Geomechanics, 2017, 17(9): 04017070. doi: 10.1061/(ASCE)GM.1943-5622.0000952
    [32]
    顾美湘. 筋箍碎石桩复合地基承载变形特性的三维离散元和模型试验研究[D]. 长沙: 湖南大学, 2017.

    GU Mei-xiang. Three-Dimensional DEM Analysis and Model Tests on Geosynthetic Encased Stone Columns[D]. Changsha: Hunan University, 2017. (in Chinese)
    [33]
    GU M, HAN J, ZHAO M H. Three-dimensional DEM analysis of axially loaded geogrid-encased stone column in clay bed[J]. International Journal of Geomechanics, 2020, 20(3): 04019180. doi: 10.1061/(ASCE)GM.1943-5622.0001595
    [34]
    HAN J. Principles and Practice of Ground Improvement[M]. Hoboken: Wiley, 2015: 133–156.

Catalog

    Article views (278) PDF downloads (180) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return