• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
NI Sha-sha, CHI Shi-chun. Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 727-734. DOI: 10.11779/CJGE201704019
Citation: NI Sha-sha, CHI Shi-chun. Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 727-734. DOI: 10.11779/CJGE201704019

Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine

More Information
  • Received Date: January 19, 2016
  • Published Date: May 19, 2017
  • It is important to determine the seepage field parameters of high earth-rock-fill dam using the observed seepage data during operation period. For Nuozhadu core rockfill dam, the training samples are produced for saturated seepage field which is calculated by the finite element program. The nonlinear relationship between seepage parameters and water heads is established using the SVM mapping. Then taking the error objective function as the fitness value of particle swarm optimization (PSO), the seepage parameters should be identified by PSO. Based on the one-dimension consolidation theory, the dissipation formulae for the excess pore water pressure in the core wall are derived, and they are used to correct the measured seepage pressure values in the core wall. The recorded osmotic pressure curves of osmometers, which are distributed in the maximum section, are used for this back analysis. The permeability coefficients of the dam materials are retrieved using the corrected measured seepage pressure values under steady state of seepage condition, i.e., the water level remains unchanged. Meanwhile, the parameters are verified by the unstable saturated-unsaturated seepage field while the water lever rises. The results show that the permeability coefficients are reasonable.
  • [1]
    汝乃华, 牛运光. 大坝事故与安全·土石坝[M]. 北京: 中国水利水电出版社, 2001. (RU Nai-hua, NIU Yun-guang. Accidents and safety of dam·earth-rock dam[M]. Beijing: China Waterpower Press, 2001. (in Chinese))
    [2]
    MIDDLEBROOKS T A. Earth-dam practice in United States[J]. Transaction of the American Society of Civil Engineers, 1953(118): 697-722.
    [3]
    U.S. Department of the Interior Teton Dam Failure Review Group. U S, Failure of teton dam: a report of findings[R]. Washington D C: U S Department of the Interior Teton Dam Failure Review Group, 1977.
    [4]
    解家毕, 孙东亚. 全国水库溃坝统计及溃坝原因分析[J]. 水利水电科技, 2009, 40(12): 124-128. (XIE Jia-bi, SUN Dong-ya. Statistic of dam failures in China and analysis on failure causations[J]. Water Resources and Hydropower Engineering, 2009, 40(12): 124-128. (in Chinese))
    [5]
    张宗亮. 糯扎渡水电站工程特点及关键技术研究[J]. 水利发电学报, 2005, 31(5): 4-7. (ZHANG Zong-liang. The project characteristics of Nuozhadu hydropower station and its key technology research results[J]. Journal of Hydroelectric Engineering, 2005, 31(5): 4-7. (in Chinese))
    [6]
    吴中如, 顾冲时. 大坝原型反分析及其应用[M]. 南京: 江苏科学技术出版社, 2000. (WU Zhong-ru, GU Shi-chong. The prototype back analysis and application of dam[M]. Nanjing: Jiangsu Science and Technology Press, 2000. (in Chinese))
    [7]
    姜谙男, 梁 冰. 基于粒子群支持向量机的三维含水层渗流参数反馈识别[J]. 岩土力学, 2009, 30(5): 1527-1531. (JIANG An-nan, LIANG Bing. Feedback identifying seepage parameters of 3D aquifer based on particle swarm optimization and support vector machine[J]. Rock and Soil Mechanics, 2009, 30(5): 1527-1531. (in Chinese))
    [8]
    KRAHN John. Seepage modeling with SEEP/W[M]. Calgary: Geo-Slope International Ltd, 2001.
    [9]
    VAPNIK V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 36-43.
    [10]
    赵洪波, 冯夏庭. 位移反分析的进化支持向量机研究[J]. 岩石力学与工程学报, 2003, 22(10): 1618-1622. (ZHAO Hong-bo, FENG Xia-ting. Study on genetic- support vector machine in displacement back analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1618-1622. (in Chinese))
    [11]
    宋志宇, 李俊杰. 基于微粒群算法的大坝材料参数反分析研究[J]. 岩土力学, 2007, 28(5): 991-994. (SONG Zhi-yu, LI Jun-jie. Study of inverse method for dam parameters based on particle swarm optimization algorithm[J]. Rock and Soil Mechanics, 2007, 28(5): 991-994. (in Chinese))
    [12]
    华罗庚, 王 元. 数论在近似分析中的应用[M]. 北京:科学出版社, 1978. (HUA Luo-geng, WANG Yuan. The application of Number-theoretic method in approximate analysis[M]. Beijing: Science Press, 1978. (in Chinese))
    [13]
    FREDLUND D G, RAHARD JO H. Saturated soil mechanics[M]. CHEN Zhong-yi, trans. Bingjing: China Architecture & Building Press, 1997.
    [14]
    FREDLUND D G, XING Anqing, HUANG Shangyan, Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journa, 1994, 31: 533-546.
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426
    [3]XIE Qiang, CHEN Yucheng, FU Xiang, TIAN Dalang, BAN Yuxin, XU Dongdong. Fluid-solid coupling model for discontinuous deformation analysis of unsaturated transient seepage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 299-306. DOI: 10.11779/CJGE20221026
    [4]Theoretical equation to predict permeability coefficient for unsaturated sandy soils and its application in the quality analysis of pavement drainage base layer[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20221049
    [5]YU Hai-tao, WANG Zhi-kun, LIU Zhong-xian. Influence mechanism of permeability coefficient in homogeneously saturated strata on responses of deep tunnels under incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 201-211. DOI: 10.11779/CJGE202202001
    [6]SHAO Long-tan, WEN Tian-de, GUO Xiao-xia. Direct measurement method and prediction formula for permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 806-812. DOI: 10.11779/CJGE201905002
    [7]MA Ya-wei, CHEN Wen-wu, BI Jun, GUO Gui-hong, JIAO Gui-de. Influence of dry density on coefficient of permeability of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 165-170. DOI: 10.11779/CJGE2018S1027
    [8]CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, HOU Xiao-qiang. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
    [9]CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004
    [10]Gao Ji, Lei Guangyao, Zhang Suochun. Numerical Analysis on Seepage through the Saturated and Unsaturated Soils of Levees or Dams[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(6): 28-37.
  • Cited by

    Periodical cited type(29)

    1. 王学峰,李翱翔,史国良,岳春强,张鹏. 大直径超长灌注桩承载特性研究. 山西建筑. 2025(04): 76-81 .
    2. 张高良. 复杂地质环境下桥梁钻孔灌注桩施工关键技术研究. 建筑技术. 2025(01): 61-64 .
    3. 田圆圆. 桥梁后压浆灌注桩承载特性试验研究. 运输经理世界. 2025(01): 75-77 .
    4. 韩重庆,戴璐,黄远,陈乾. 南京市中心医院综合楼原址新建项目单侧大悬挑超限高层结构设计. 建筑结构. 2024(16): 107-113+68 .
    5. 郭能荣. 后压浆桩基承载特性试验研究与分析. 交通世界. 2024(22): 150-153 .
    6. 朱文波,戴国亮,邓会元,竺明星,龚维明. 后顶扩臂压浆桩竖向承载机理及其桩盘力学性能研究. 土木工程学报. 2024(10): 82-94 .
    7. 毛龙,朱文波,杨嘉毅,李勇海,邓会元,程丹莲. 移动射流加固吸力式沉箱基础承载特性试验研究. 岩土工程学报. 2024(S2): 226-230+241 . 本站查看
    8. 夏建中,刘天豪. 不同土体条件下超灌量对桩体位移的影响分析. 浙江科技学院学报. 2023(01): 55-61 .
    9. 吴建军,龚洪兵,胡伟,陈东旭. 桥梁工程后压浆灌注桩承载特性试验研究. 交通世界. 2023(Z2): 226-228+231 .
    10. 吴征,祁熙鹏,党涛,苗苗,陈强. 黄土地层桥梁桩基后压浆技术研究进展. 市政技术. 2023(06): 91-99+106 .
    11. 臧诗齐 ,戴国亮 ,钱晓楠 . 不同注浆材料作用下后压浆桩桩-土界面力学特性分析. 东南大学学报(自然科学版). 2023(03): 496-503 .
    12. 詹伟达,欧红亮,王幸,娄学谦,刘日炜. 桩端及桩侧后注浆对超长灌注桩承载特性的影响. 公路交通科技. 2023(09): 141-150 .
    13. 史昊. 银川沈阳西路快速化改造总体设计研究. 中国水运. 2022(02): 144-146 .
    14. 翟聪,罗志聪,柳磊,王同卫,钱晓楠. 组合后压浆对灌注桩承载力的增强作用研究. 中国水运(下半月). 2022(01): 139-141 .
    15. 晁鹏飞. 超大吨位灌注桩承载力试验及数值模型研究. 城市建筑. 2022(16): 159-163 .
    16. 王贵森,洪宝宁,孙东宁,邵志伟. 联合后注浆对群桩基础工程特性的影响. 公路. 2022(09): 203-211 .
    17. 王卿,李瑜,余奇异,胡涛. 洞庭湖地区桥梁组合压浆灌注桩竖向承载性能试验研究. 建筑结构. 2022(S2): 2497-2501 .
    18. 陈祉阳,龚维明,靳朋刘,朱建民,陈新奎. 基于分布式后压浆的灌注桩承载力试验研究. 地下空间与工程学报. 2022(S2): 689-695 .
    19. 徐艺飞,万志辉,戴国亮,龚维明,高鲁超. 桩端后压浆灌注桩长期承载性能试验研究. 建筑结构学报. 2021(04): 139-146 .
    20. 邸洪江,余奇异,钱晓楠,胡涛. 高速公路桥梁大直径组合后压浆灌注桩自平衡试验研究. 中国水运(下半月). 2021(06): 131-133 .
    21. 秦鹏飞,王为林,袁媛. 岩土工程注浆技术与其应用研究. 地质与勘探. 2021(03): 631-639 .
    22. 叶新宇,彭锐,马新岩,张升,王善勇. 压密效应对新型压密注浆土钉的强化研究. 岩土工程学报. 2021(09): 1649-1656+1738 . 本站查看
    23. 薛振年,冯泓鸣,任晨宁,周志军. 黄土地区桥梁灌注桩桩侧-桩端联合压浆模型试验. 长安大学学报(自然科学版). 2021(06): 19-28 .
    24. 王灿,刘青,党智. 基于挠度的连续梁桥预应力损失分析. 中国水运. 2021(12): 154-156 .
    25. 杨纪,李孟然,黄毅,崔振华. 游荡型河道引桥桩基组合注浆工艺关键技术. 人民黄河. 2020(01): 117-120 .
    26. 万志辉,戴国亮,龚维明,竺明星,高鲁超. 不同成桩工艺对后压浆灌注桩承载特性影响的试验研究. 东南大学学报(自然科学版). 2020(02): 231-236 .
    27. 万志辉,戴国亮,高鲁超,龚维明. 大直径后压浆灌注桩承载力和沉降的实用计算方法研究. 岩土力学. 2020(08): 2746-2755 .
    28. 王丽锋,周长庚. 路面基床病害治理中高性能压浆材料的试验研究. 路基工程. 2019(03): 194-198+204 .
    29. 刘彦峰,胡晓明,马远刚,刘少成. 后注浆技术在粉细砂地层灌注桩中的应用. 桥梁建设. 2019(S1): 127-132 .

    Other cited types(16)

Catalog

    Article views (356) PDF downloads (227) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return