| Citation: | QU Shizhang, LIU Xiaoming, LI Li, CHEN Renpeng. Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 144-152. DOI: 10.11779/CJGE20210543 |
The coarse-grained soil is widely distributed in nature and used in engineering. The permeability is one of its key properties, and for the same type of coarse-grained soil, its permeability is almost determined by the grain-size distribution and the pore characteristics. In principle, its permeability coefficient can be calculated based on the grain-size distribution and the pore characteristic parameters. The two-dimensional fractal gradation model based on the fractal theory is used to quantitatively describe the continuous gradation and gap gradation of the coarse-grained soil so as to determine the applicability of the gradation model and obtain its parameters. Then, based on the parameters of the two-dimensional fractal gradation model and the Kozeny-Carman formula, a formula for calculating the permeability coefficient including grain-size distribution parameters and the porosity is established. After discussing the physical meaning of each item in the formula, the validation of the formula is verified by using the measured data in the existing researches. The results show that the two-dimensional gradation model can accurately and uniquely describe the grain size distribution of the coarse-grained soil. The established formula for calculating the permeability coefficient of the coarse-grained soil including grain-size distribution parameters and the porosity is reasonable, and it is suitable for calculating the permeability coefficient of continuously graded and gap-graded coarse-grained soil.
| [1] |
土工试验规程: SL237-1999[S]. 北京: 中国水利水电出版社, 1999.
SL237-1999 Specification of Soil Test: SL237-1999[S]. Beijing: China Water & Power Press, 1999. (in Chinese)
|
| [2] |
包孟碟, 朱俊高, 吴二鲁, 等. 基于级配方程的粗粒土渗透系数经验公式及其验证[J]. 岩土工程学报, 2020, 42(8): 1571-1576. doi: 10.11779/CJGE202008024
BAO Mengdie, ZHU Jungao, WU Erlu, et al. Empirical formula for permeability coefficient of coarse grained soil based on gradation equation and its verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1571-1576. (in Chinese) doi: 10.11779/CJGE202008024
|
| [3] |
郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998.
GUO Qingguo. Engineering characteristics and application of coarse-grained soil[M]. Zhengzhou: Yellow River Water Conservancy Press, 1998. (in Chinese)
|
| [4] |
杨志浩, 岳祖润, 冯怀平, 等. 重载铁路基床表层级配碎石渗透特性试验研究[J]. 岩土力学, 2021, 42(1): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101022.htm
YANG Zhihao, YUE Zurun, FENG Huaiping, et al. Experimental study of permeability properties of graded macadam in heavy haul railway subgrade bed surface layer[J]. Rock and Soil Mechanics, 2021, 42(1): 193-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101022.htm
|
| [5] |
朱崇辉. 粗粒土的渗透特性研究[D]. 杨凌: 西北农林科技大学, 2006.
ZHU Chonghui. Study on the Coarse-Grained Soil Permeability Characteristic[D]. Yangling: Northwest A & F University, 2006. (in Chinese)
|
| [6] |
周中, 傅鹤林, 刘宝琛, 等. 土石混合体渗透性能的正交试验研究[J]. 岩土工程学报, 2006, 28(9): 1134-1138. http://cge.nhri.cn/cn/article/id/12168
ZHOU Zhong, FU Helin, LIU Baochen, et al. Orthogonal tests on permeability of soil-rock-mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1134-1138. (in Chinese) http://cge.nhri.cn/cn/article/id/12168
|
| [7] |
刘黎. 粗粒料渗透特性及渗透规律试验研究[D]. 成都: 四川大学, 2006.
LIU Li. Testing study on seepage property and seepage law of the coarse grain[D]. Chengdu: Sichuan University, 2006. (in Chinese)
|
| [8] |
黄达, 曾彬, 王庆乐. 粗粒土孔隙比及级配参数与渗透系数概率的相关性研究[J]. 水利学报, 2015, 46(8): 900-907. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm
HUANG Da, ZENG Bin, WANG Qingle. Study on probabilistic relation between permeability coefficient and void ratio and grain composition of coarse grained soils using Copula theory[J]. Journal of Hydraulic Engineering, 2015, 46(8): 900-907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm
|
| [9] |
邵生俊, 李建军, 杨扶银. 粗粒土孔隙特征及其对泥浆渗透性的影响[J]. 岩土工程学报, 2009, 31(1): 59-65. doi: 10.3321/j.issn:1000-4548.2009.01.010
SHAO Shengjun, LI Jianjun, YANG Fuyin. Pore characteristics of coarse grained soil and their effect on slurry permeability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 59-65. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.01.010
|
| [10] |
TERZAGHI K. Principles of soil mechanics: III. Determination of permeability of clay[J]. Engineering News Records, 1925, 95(21): 832–836.
|
| [11] |
SHAHABI A A, DAS B M, TARQUIN A J. An empirical relation for coefficient of permeability of sand[C]// Proceedings of the 4th Australia-New Zealand conference on geomechanics. Perth, 1984: 54–57.
|
| [12] |
CHAPUIS R P. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio[J]. Canadian Geotechnical Journal, 2004, 41(5): 787-795.
|
| [13] |
刘杰. 土的渗透稳定与渗流控制[M]. 北京: 水利电力出版社, 1992.
LIU Jie. Seepage stability and seepage control of soil[M]. Beijing: Chinese Water Conservancy and Electric Power Press, 1992. (in Chinese)
|
| [14] |
TALBOT A, RICHART F E. The strength of concrete-its relation to the cement, aggregates and water[J]. Bulletin, Univ Illinois Eng Exp Station, 1923, 137: 1–118.
|
| [15] |
SWAMEE P K, OJHA C S P. Bed-load and suspended-load transport of nonuniform sediments[J]. Journal of Hydraulic Engineering, 1991, 117(6): 774-787.
|
| [16] |
朱俊高, 郭万里, 王元龙, 等. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931-1936. doi: 10.11779/CJGE201510023
ZHU Jungao, GUO Wanli, WANG Yuanlong, et al. Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1931-1936. (in Chinese) doi: 10.11779/CJGE201510023
|
| [17] |
于际都, 刘斯宏, 王涛, 等. 间断级配粗粒土压实特性试验研究[J]. 岩土工程学报, 2019, 41(11): 2142-2148. doi: 10.11779/CJGE201911021
YU Jidu, LIU Sihong, WANG Tao, et al. Experimental research on compaction characteristics of gap-graded coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2142-2148. (in Chinese) doi: 10.11779/CJGE201911021
|
| [18] |
SHI X S, LIU K, YIN J H. Effect of initial density, particle shape, and confining stress on the critical state behavior of weathered gap-graded granular soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 04020160.
|
| [19] |
MANDELBROT B B. Fractial: form, chance and dimension [M]. San Francisco: W H Freeman and Company, 1977.
|
| [20] |
TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
|
| [21] |
谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报, 1992, 14(1): 14-24. http://cge.nhri.cn/cn/article/id/9547
XIE Heping. Fractal geometry and its application to rock and soil materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 14-24. (in Chinese) http://cge.nhri.cn/cn/article/id/9547
|
| [22] |
王宝军, 施斌, 唐朝生. 基于GIS实现黏性土颗粒形态的三维分形研究[J]. 岩土工程学报, 2007, 29(2): 309-312. http://cge.nhri.cn/cn/article/id/12325
WANG Baojun, SHI Bin, TANG Chaosheng. Study on 3D fractal dimension of clayey soil by use of GIS[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 309-312. (in Chinese) http://cge.nhri.cn/cn/article/id/12325
|
| [23] |
徐永福. 考虑颗粒破碎影响的粗粒土的剪切强度理论[J]. 岩土工程学报, 2018, 40(7): 1171-1179. doi: 10.11779/CJGE201807002
XU Yongfu. Theory of shear strength of granular materials based on particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1171-1179. (in Chinese) doi: 10.11779/CJGE201807002
|
| [24] |
舒志乐, 刘新荣, 刘保县, 等. 土石混合体粒度分形特性及其与含石量和强度的关系[J]. 中南大学学报(自然科学版), 2010, 41(3): 1096-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003048.htm
SHU Zhile, LIU Xinrong, LIU Baoxian, et al. Granule fractal properties of earth-rock aggregate and relationship between its gravel content and strength[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1096-1101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003048.htm
|
| [25] |
TAŞDEMIR A. Fractal evaluation of particle size distributions of chromites in different comminution environments[J]. Minerals Engineering, 2009, 22(2): 156-167.
|
| [26] |
LIU X M, QU S Z, CHEN R P, et al. Development of a two-dimensional fractal model for analyzing the particle size distribution of geomaterials[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018175.
|
| [27] |
KOZENY J. Üeber kapillare leitung des wassers im boden[J]. Akademie der Wissenechaften Wien, 1927, 136(2a): 271–306. (KOZENY J. Capillary line of water in soils[J]. Academy of Sciences, Vienna, 1927, 136(2a): 271–306. (in Germany))
|
| [28] |
CARMAN P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75: 32-48.
|
| [29] |
CARRIER W D III. Goodbye, hazen; hello, kozeny-carman[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 1054-1056.
|
| [30] |
TAYLOR D W. Fundamentals of soil mechanics[J]. Soil Science, 1948, 66(2): 161.
|
| [31] |
DOLZYK K, CHMIELEWSKA I. Predicting the coefficient of permeability of non-plastic soils[J]. Soil Mechanics and Foundation Engineering, 2014, 51(5): 213-218.
|
| [32] |
苏立君, 张宜健, 王铁行. 不同粒径级砂土渗透特性试验研究[J]. 岩土力学, 2014, 35(5): 1289-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405011.htm
SU Lijun, ZHANG Yijian, WANG Tiexing. Investigation on permeability of sands with different particle sizes[J]. Rock and Soil Mechanics, 2014, 35(5): 1289-1294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405011.htm
|
| [1] | OU Yanyuxin, MOU Cong, WENG Jiaxing, HONG Zhenshun. Mechanism of pore pressure time lag for saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 864-870. DOI: 10.11779/CJGE20221569 |
| [2] | LIU Ning, GAO Yaohui, CHEN Pingzhi. Relaxation time-space effects of columnar jointed basalt and their control technologies[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2052-2061. DOI: 10.11779/CJGE20220845 |
| [3] | SU Yanlin, CAI Guoqing, LIU Yi, SHAN Yepeng, LI Jian. Elastic-viscoplastic constitutive model for overconsolidated unsaturated soils considering time effects and its verification[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1250-1258. DOI: 10.11779/CJGE20220292 |
| [4] | LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032 |
| [5] | TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012 |
| [6] | MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021 |
| [7] | HU Ya-yuan, DING Pan. Three-dimensional rheological model for double-yield surface based on equivalent time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 53-62. DOI: 10.11779/CJGE202001006 |
| [8] | FU Ping, QIN Peng-fei, WANG Chun, YANG Xiao-dong. Design of grouting parameters in rock based on grouting time[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1808-1813. DOI: 10.11779/CJGE201410007 |
| [9] | JIE Yu-xin, DONG Wei-jie, FU Xu-dong, LI Guang-xin, ZHOU Xiao-jie. Modelling of developing course of piping with time[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 215. |
| [10] | Zhang Junsheng, Xue Ye, Tao Jinan. Prediction of Stable Displacement and Unstable Time on Tunnel and Slope[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 39-45. |