• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QU Shizhang, LIU Xiaoming, LI Li, CHEN Renpeng. Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 144-152. DOI: 10.11779/CJGE20210543
Citation: QU Shizhang, LIU Xiaoming, LI Li, CHEN Renpeng. Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 144-152. DOI: 10.11779/CJGE20210543

Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model

More Information
  • Received Date: May 13, 2021
  • Available Online: February 03, 2023
  • Published Date: May 13, 2021
  • The coarse-grained soil is widely distributed in nature and used in engineering. The permeability is one of its key properties, and for the same type of coarse-grained soil, its permeability is almost determined by the grain-size distribution and the pore characteristics. In principle, its permeability coefficient can be calculated based on the grain-size distribution and the pore characteristic parameters. The two-dimensional fractal gradation model based on the fractal theory is used to quantitatively describe the continuous gradation and gap gradation of the coarse-grained soil so as to determine the applicability of the gradation model and obtain its parameters. Then, based on the parameters of the two-dimensional fractal gradation model and the Kozeny-Carman formula, a formula for calculating the permeability coefficient including grain-size distribution parameters and the porosity is established. After discussing the physical meaning of each item in the formula, the validation of the formula is verified by using the measured data in the existing researches. The results show that the two-dimensional gradation model can accurately and uniquely describe the grain size distribution of the coarse-grained soil. The established formula for calculating the permeability coefficient of the coarse-grained soil including grain-size distribution parameters and the porosity is reasonable, and it is suitable for calculating the permeability coefficient of continuously graded and gap-graded coarse-grained soil.
  • [1]
    土工试验规程: SL237-1999[S]. 北京: 中国水利水电出版社, 1999.

    SL237-1999 Specification of Soil Test: SL237-1999[S]. Beijing: China Water & Power Press, 1999. (in Chinese)
    [2]
    包孟碟, 朱俊高, 吴二鲁, 等. 基于级配方程的粗粒土渗透系数经验公式及其验证[J]. 岩土工程学报, 2020, 42(8): 1571-1576. doi: 10.11779/CJGE202008024

    BAO Mengdie, ZHU Jungao, WU Erlu, et al. Empirical formula for permeability coefficient of coarse grained soil based on gradation equation and its verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1571-1576. (in Chinese) doi: 10.11779/CJGE202008024
    [3]
    郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998.

    GUO Qingguo. Engineering characteristics and application of coarse-grained soil[M]. Zhengzhou: Yellow River Water Conservancy Press, 1998. (in Chinese)
    [4]
    杨志浩, 岳祖润, 冯怀平, 等. 重载铁路基床表层级配碎石渗透特性试验研究[J]. 岩土力学, 2021, 42(1): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101022.htm

    YANG Zhihao, YUE Zurun, FENG Huaiping, et al. Experimental study of permeability properties of graded macadam in heavy haul railway subgrade bed surface layer[J]. Rock and Soil Mechanics, 2021, 42(1): 193-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101022.htm
    [5]
    朱崇辉. 粗粒土的渗透特性研究[D]. 杨凌: 西北农林科技大学, 2006.

    ZHU Chonghui. Study on the Coarse-Grained Soil Permeability Characteristic[D]. Yangling: Northwest A & F University, 2006. (in Chinese)
    [6]
    周中, 傅鹤林, 刘宝琛, 等. 土石混合体渗透性能的正交试验研究[J]. 岩土工程学报, 2006, 28(9): 1134-1138. http://cge.nhri.cn/cn/article/id/12168

    ZHOU Zhong, FU Helin, LIU Baochen, et al. Orthogonal tests on permeability of soil-rock-mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1134-1138. (in Chinese) http://cge.nhri.cn/cn/article/id/12168
    [7]
    刘黎. 粗粒料渗透特性及渗透规律试验研究[D]. 成都: 四川大学, 2006.

    LIU Li. Testing study on seepage property and seepage law of the coarse grain[D]. Chengdu: Sichuan University, 2006. (in Chinese)
    [8]
    黄达, 曾彬, 王庆乐. 粗粒土孔隙比及级配参数与渗透系数概率的相关性研究[J]. 水利学报, 2015, 46(8): 900-907. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm

    HUANG Da, ZENG Bin, WANG Qingle. Study on probabilistic relation between permeability coefficient and void ratio and grain composition of coarse grained soils using Copula theory[J]. Journal of Hydraulic Engineering, 2015, 46(8): 900-907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm
    [9]
    邵生俊, 李建军, 杨扶银. 粗粒土孔隙特征及其对泥浆渗透性的影响[J]. 岩土工程学报, 2009, 31(1): 59-65. doi: 10.3321/j.issn:1000-4548.2009.01.010

    SHAO Shengjun, LI Jianjun, YANG Fuyin. Pore characteristics of coarse grained soil and their effect on slurry permeability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 59-65. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.01.010
    [10]
    TERZAGHI K. Principles of soil mechanics: III. Determination of permeability of clay[J]. Engineering News Records, 1925, 95(21): 832–836.
    [11]
    SHAHABI A A, DAS B M, TARQUIN A J. An empirical relation for coefficient of permeability of sand[C]// Proceedings of the 4th Australia-New Zealand conference on geomechanics. Perth, 1984: 54–57.
    [12]
    CHAPUIS R P. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio[J]. Canadian Geotechnical Journal, 2004, 41(5): 787-795.
    [13]
    刘杰. 土的渗透稳定与渗流控制[M]. 北京: 水利电力出版社, 1992.

    LIU Jie. Seepage stability and seepage control of soil[M]. Beijing: Chinese Water Conservancy and Electric Power Press, 1992. (in Chinese)
    [14]
    TALBOT A, RICHART F E. The strength of concrete-its relation to the cement, aggregates and water[J]. Bulletin, Univ Illinois Eng Exp Station, 1923, 137: 1–118.
    [15]
    SWAMEE P K, OJHA C S P. Bed-load and suspended-load transport of nonuniform sediments[J]. Journal of Hydraulic Engineering, 1991, 117(6): 774-787.
    [16]
    朱俊高, 郭万里, 王元龙, 等. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931-1936. doi: 10.11779/CJGE201510023

    ZHU Jungao, GUO Wanli, WANG Yuanlong, et al. Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1931-1936. (in Chinese) doi: 10.11779/CJGE201510023
    [17]
    于际都, 刘斯宏, 王涛, 等. 间断级配粗粒土压实特性试验研究[J]. 岩土工程学报, 2019, 41(11): 2142-2148. doi: 10.11779/CJGE201911021

    YU Jidu, LIU Sihong, WANG Tao, et al. Experimental research on compaction characteristics of gap-graded coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2142-2148. (in Chinese) doi: 10.11779/CJGE201911021
    [18]
    SHI X S, LIU K, YIN J H. Effect of initial density, particle shape, and confining stress on the critical state behavior of weathered gap-graded granular soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 04020160.
    [19]
    MANDELBROT B B. Fractial: form, chance and dimension [M]. San Francisco: W H Freeman and Company, 1977.
    [20]
    TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
    [21]
    谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报, 1992, 14(1): 14-24. http://cge.nhri.cn/cn/article/id/9547

    XIE Heping. Fractal geometry and its application to rock and soil materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 14-24. (in Chinese) http://cge.nhri.cn/cn/article/id/9547
    [22]
    王宝军, 施斌, 唐朝生. 基于GIS实现黏性土颗粒形态的三维分形研究[J]. 岩土工程学报, 2007, 29(2): 309-312. http://cge.nhri.cn/cn/article/id/12325

    WANG Baojun, SHI Bin, TANG Chaosheng. Study on 3D fractal dimension of clayey soil by use of GIS[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 309-312. (in Chinese) http://cge.nhri.cn/cn/article/id/12325
    [23]
    徐永福. 考虑颗粒破碎影响的粗粒土的剪切强度理论[J]. 岩土工程学报, 2018, 40(7): 1171-1179. doi: 10.11779/CJGE201807002

    XU Yongfu. Theory of shear strength of granular materials based on particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1171-1179. (in Chinese) doi: 10.11779/CJGE201807002
    [24]
    舒志乐, 刘新荣, 刘保县, 等. 土石混合体粒度分形特性及其与含石量和强度的关系[J]. 中南大学学报(自然科学版), 2010, 41(3): 1096-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003048.htm

    SHU Zhile, LIU Xinrong, LIU Baoxian, et al. Granule fractal properties of earth-rock aggregate and relationship between its gravel content and strength[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1096-1101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003048.htm
    [25]
    TAŞDEMIR A. Fractal evaluation of particle size distributions of chromites in different comminution environments[J]. Minerals Engineering, 2009, 22(2): 156-167.
    [26]
    LIU X M, QU S Z, CHEN R P, et al. Development of a two-dimensional fractal model for analyzing the particle size distribution of geomaterials[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018175.
    [27]
    KOZENY J. Üeber kapillare leitung des wassers im boden[J]. Akademie der Wissenechaften Wien, 1927, 136(2a): 271–306. (KOZENY J. Capillary line of water in soils[J]. Academy of Sciences, Vienna, 1927, 136(2a): 271–306. (in Germany))
    [28]
    CARMAN P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75: 32-48.
    [29]
    CARRIER W D III. Goodbye, hazen; hello, kozeny-carman[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 1054-1056.
    [30]
    TAYLOR D W. Fundamentals of soil mechanics[J]. Soil Science, 1948, 66(2): 161.
    [31]
    DOLZYK K, CHMIELEWSKA I. Predicting the coefficient of permeability of non-plastic soils[J]. Soil Mechanics and Foundation Engineering, 2014, 51(5): 213-218.
    [32]
    苏立君, 张宜健, 王铁行. 不同粒径级砂土渗透特性试验研究[J]. 岩土力学, 2014, 35(5): 1289-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405011.htm

    SU Lijun, ZHANG Yijian, WANG Tiexing. Investigation on permeability of sands with different particle sizes[J]. Rock and Soil Mechanics, 2014, 35(5): 1289-1294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405011.htm
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return