• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Jingbo, LU Xihuan, BAO Xin. Comparison of response acceleration methods suggested by different standards[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 47-56. DOI: 10.11779/CJGE20211392
Citation: LIU Jingbo, LU Xihuan, BAO Xin. Comparison of response acceleration methods suggested by different standards[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 47-56. DOI: 10.11779/CJGE20211392

Comparison of response acceleration methods suggested by different standards

More Information
  • Received Date: November 22, 2021
  • Available Online: February 03, 2023
  • Published Date: November 22, 2021
  • The Chinese specifications, "Code for seismic design of urban rail transit structures" and "Standard for seismic design of nuclear power plants", give two response acceleration methods for the seismic analysis of underground structures. The difference lies in the determination of the effective inertial acceleration. The former calculates the horizontal effective inertia through free-field shear stress. However, the latter directly uses the free-field acceleration as the effective inertial acceleration. Their applicability is evaluated through the theoretical analysis and numerical examples, and the horizontal effective inertial acceleration calculated by the two methods is compared and studied with the site type, shear wave velocity and ground motion intensity. The research results show that whether to consider the damping of the soil is the main source of the difference in the calculation of the two response acceleration methods, and the stiffness ratio (wave velocity ratio) of the adjacent soil layers is also the source of the difference. The difference of the horizontal effective inertia calculated by the two standard methods decreases with the increase of shear wave velocity, and increases with the increase of ground motion intensity. When the site conditions are poor or the ground motion intensity is high, the horizontal effective inertial acceleration calculated based on the shear stress is more reasonable. The displacement obtained by this calculation is consistent with the calculated result by the dynamic time history method, thus it has better calculation accuracy. A new response acceleration method for calculating the effective inertial acceleration through free-field displacement is also proposed-displacement-based response acceleration method. The characteristics of using the free-field displacement to determine the effective acceleration and the calculation accuracy when used in the response acceleration method are discussed and compared, and it is preliminarily verified that the displacement-based response acceleration method has good calculation accuracy and wider adaptability.
  • [1]
    许成顺, 许紫刚, 杜修力, 等. 地下结构抗震简化分析方法比较研究[J]. 地震工程与工程振动, 2017, 37(2): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm

    XU Chengshun, XU Zigang, DU Xiuli, et al. Comparative study of simplified methods for seismic analysis of underground structure[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(2): 65-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm
    [2]
    VAN NOSTRAND R. Proceedings of the international symposium on wave propagation and dynamic properties of earth materials[J]. Earth-Science Reviews, 1969, 5(4): A203.
    [3]
    KUESEL T R. Earthquake design criteria for subways[J]. Journal of the Structural Division, 1969, 95(6): 1213-1231. doi: 10.1061/JSDEAG.0002292
    [4]
    HAMADA M, SUGIHARA Y, SHIBA Y, et al. Observation and study on dynamic behavior of rock cavern during earthquake[J]. Proceedings of the Japan Society of Civil Engineers, 1984, 1984(341): 187-196. doi: 10.2208/jscej1969.1984.187
    [5]
    川岛一彦. 地下构筑物の耐震设计[M]. 鹿岛: 鹿岛出版会, 1994.

    KAZUHIKO K. Seismic Design of Underground Structures[M]. Kashima: Kashima Publishing Company, 1994. (in Japanese)
    [6]
    地下结构抗震设计标准: GB/T 51336—2018[S]. 北京: 中国建筑工业出版社, 2018.

    Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
    [7]
    刘晶波, 王文晖, 赵冬冬, 等. 地下结构抗震分析的整体式反应位移法[J]. 岩石力学与工程学报, 2013, 32(8): 1618-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308015.htm

    LIU Jingbo, WANG Wenhui, ZHAO Dongdong, et al. Integral response deformation method for seismic analysis of underground structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1618-1624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308015.htm
    [8]
    刘晶波, 王文晖, 赵冬冬, 等. 复杂断面地下结构地震反应分析的整体式反应位移法[J]. 土木工程学报, 2014, 47(1): 134-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201401018.htm

    LIU Jingbo, WANG Wenhui, ZHAO Dongdong, et al. Integral response deformation method in seismic analysis of complex section underground structures[J]. China Civil Engineering Journal, 2014, 47(1): 134-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201401018.htm
    [9]
    城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014.

    Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
    [10]
    核电厂抗震设计标准: GB 50267—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Seismic Design of Nuclear Power Plants: GB 50267—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [11]
    刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008, 41(4): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200804011.htm

    LIU Jingbo, LIU Xiangqing, LI Bin. A Pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008, 41(4): 73-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200804011.htm
    [12]
    TATEISHI A. A study on seismic analysis methods in the cross section of underground structures using static finite element method[J]. Structural Engineering, 2005, 22(1): 41-54. doi: 10.2208/jsceseee.22.41s
    [13]
    刘如山, 胡少卿, 石宏彬. 地下结构抗震计算中拟静力法的地震荷载施加方法研究[J]. 岩土工程学报, 2007, 29(2): 237-242. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702016.htm

    LIU Rushan, HU Shaoqing, SHI Hongbin. Study on seismic loading of pseudo-static approach used in the seismic design of underground structure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 237-242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702016.htm
    [14]
    陶连金, 王文沛, 张波, 等. 地铁地下结构抗震设计方法差异性规律研究[J]. 土木工程学报, 2012, 45(12): 170-176. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201212021.htm

    TAO Lianjin, WANG Wenpei, ZHANG Bo, et al. Difference law study of seismic design methods for subway structures[J]. China Civil Engineering Journal, 2012, 45(12): 170-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201212021.htm
    [15]
    董正方, 蔡宝占, 姚毅超, 等. 反应加速度法和反应位移法精度随结构埋深变化的研究[J]. 振动与冲击, 2017, 36(14): 216-220, 244. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201714034.htm

    DONG Zhengfang, CAI Baozhan, YAO Yichao, et al. Accuracy of the response acceleration method and response displacement method considering different imbedding depths of underground structures[J]. Journal of Vibration and Shock, 2017, 36(14): 216-220, 244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201714034.htm
    [16]
    徐琨鹏, 景立平, 宾佳. 地下结构强制反应位移法和反应加速度法的对比分析[J]. 地震工程学报, 2020, 42(4): 967-972. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004020.htm

    XU Kunpeng, JING Liping, BIN Jia. A comparative analysis of forced displacement and response acceleration methods for underground structures[J]. China Earthquake Engineering Journal, 2020, 42(4): 967-972. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004020.htm
    [17]
    禹海涛, 张正伟, 李攀. 地下结构抗震设计的改进等效反应加速度法[J]. 岩土力学, 2020, 41(7): 2401-2410. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007027.htm

    YU Haitao, ZHANG Zhengwei, LI Pan. Improved equivalent response acceleration method for seismic design of underground structures[J]. Rock and Soil Mechanics, 2020, 41(7): 2401-2410. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007027.htm
  • Related Articles

    [1]High-performance Solid-fluid Coupled Simulation Method for Geotechnical Engineering[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240382
    [2]GUO Hong-yan, JI Ya-ying, FANG Lin, LI Ke, TANG Cheng-ping, WANG Shi-fa. External water pressures and limited emission standards of water-rich tunnels based on fluid-solid coupling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 165-168. DOI: 10.11779/CJGE2019S1042
    [3]WU Fang, ZHANG Lu-lu, ZHENG Wen-tang, WEI Xin. Probabilistic back analysis method for unsaturated soil slopes with fluid-solid coupling process based on polynomial chaos expansion[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2215-2222. DOI: 10.11779/CJGE201812008
    [4]WU Yong-kang, WANG Xiang-nan, DONG Wei-xin, YU Yu-zhen. Dynamic analyses of a high earth-rockfill dam considering effects of solid-fluid coupling[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2007-2013. DOI: 10.11779/CJGE201511010
    [5]ZHOU Yi, LI Shu-cai, LI Li-ping, ZHANG Qian-qing, SHI Shao-shuai, SONG Shu-guang, WANG Kang, CHEN Di-yang, SUN Shang-qu. New technology for fluid-solid coupling tests of underground engineering and its application in experimental simulation of water inrush in filled-type karst conduit[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1232-1240. DOI: 10.11779/CJGE201507009
    [6]LI Liang, CUI Zhi-mou, KANG Cui-lan, WANG Xiang-bao. Fluid-solid coupling dynamic model for fluid-saturated porous media in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 281-285.
    [7]LIU Jing, CHEN Jin-jian, WANG Jian-hua. Fluid-solid coupling analysis of multi-grade dewatering in Hongqiao transport hub[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 210-215.
    [8]LI Li-ping, LI Shu-cai, LI Shu-chen, FENG Xian-da, LI Guo-ying, LIU Bin, WANG Jing, XU Zhen-hao. Numerical analysis and fluid-solid coupling model tests of coal mining under loose confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 679-690.
    [9]SONG Jin-hu, MIAO Lin-chang, DAI Shi-min, MA Yuan. 3D coupled mechanical and hydraulic analysis of pore water pressure disturbed by shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 302-312.
    [10]Xu Zenghe, Xu Xiaohe. Fluid-solid coupling problem in the liquid extraction at fixed flux[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 737-741.
  • Other Related Supplements

  • Cited by

    Periodical cited type(2)

    1. 邱军领,贾玎,赖金星,唐琨杰,强磊. 含裂隙土质隧道降雨入渗双通道渗流模型. 岩土工程学报. 2025(03): 548-558 . 本站查看
    2. 张小东,路喆津,刘敏,杨峰,赵炼恒. 强降雨作用下引入分形理论的浅层边坡入渗及稳定性分析. 哈尔滨工业大学学报. 2024(11): 140-150 .

    Other cited types(2)

Catalog

    Article views (234) PDF downloads (102) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return