Citation: | LIU Jingbo, LU Xihuan, BAO Xin. Comparison of response acceleration methods suggested by different standards[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 47-56. DOI: 10.11779/CJGE20211392 |
[1] |
许成顺, 许紫刚, 杜修力, 等. 地下结构抗震简化分析方法比较研究[J]. 地震工程与工程振动, 2017, 37(2): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm
XU Chengshun, XU Zigang, DU Xiuli, et al. Comparative study of simplified methods for seismic analysis of underground structure[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(2): 65-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm
|
[2] |
VAN NOSTRAND R. Proceedings of the international symposium on wave propagation and dynamic properties of earth materials[J]. Earth-Science Reviews, 1969, 5(4): A203.
|
[3] |
KUESEL T R. Earthquake design criteria for subways[J]. Journal of the Structural Division, 1969, 95(6): 1213-1231. doi: 10.1061/JSDEAG.0002292
|
[4] |
HAMADA M, SUGIHARA Y, SHIBA Y, et al. Observation and study on dynamic behavior of rock cavern during earthquake[J]. Proceedings of the Japan Society of Civil Engineers, 1984, 1984(341): 187-196. doi: 10.2208/jscej1969.1984.187
|
[5] |
川岛一彦. 地下构筑物の耐震设计[M]. 鹿岛: 鹿岛出版会, 1994.
KAZUHIKO K. Seismic Design of Underground Structures[M]. Kashima: Kashima Publishing Company, 1994. (in Japanese)
|
[6] |
地下结构抗震设计标准: GB/T 51336—2018[S]. 北京: 中国建筑工业出版社, 2018.
Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
|
[7] |
刘晶波, 王文晖, 赵冬冬, 等. 地下结构抗震分析的整体式反应位移法[J]. 岩石力学与工程学报, 2013, 32(8): 1618-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308015.htm
LIU Jingbo, WANG Wenhui, ZHAO Dongdong, et al. Integral response deformation method for seismic analysis of underground structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1618-1624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308015.htm
|
[8] |
刘晶波, 王文晖, 赵冬冬, 等. 复杂断面地下结构地震反应分析的整体式反应位移法[J]. 土木工程学报, 2014, 47(1): 134-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201401018.htm
LIU Jingbo, WANG Wenhui, ZHAO Dongdong, et al. Integral response deformation method in seismic analysis of complex section underground structures[J]. China Civil Engineering Journal, 2014, 47(1): 134-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201401018.htm
|
[9] |
城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014.
Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
|
[10] |
核电厂抗震设计标准: GB 50267—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Seismic Design of Nuclear Power Plants: GB 50267—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[11] |
刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008, 41(4): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200804011.htm
LIU Jingbo, LIU Xiangqing, LI Bin. A Pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008, 41(4): 73-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200804011.htm
|
[12] |
TATEISHI A. A study on seismic analysis methods in the cross section of underground structures using static finite element method[J]. Structural Engineering, 2005, 22(1): 41-54. doi: 10.2208/jsceseee.22.41s
|
[13] |
刘如山, 胡少卿, 石宏彬. 地下结构抗震计算中拟静力法的地震荷载施加方法研究[J]. 岩土工程学报, 2007, 29(2): 237-242. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702016.htm
LIU Rushan, HU Shaoqing, SHI Hongbin. Study on seismic loading of pseudo-static approach used in the seismic design of underground structure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 237-242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702016.htm
|
[14] |
陶连金, 王文沛, 张波, 等. 地铁地下结构抗震设计方法差异性规律研究[J]. 土木工程学报, 2012, 45(12): 170-176. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201212021.htm
TAO Lianjin, WANG Wenpei, ZHANG Bo, et al. Difference law study of seismic design methods for subway structures[J]. China Civil Engineering Journal, 2012, 45(12): 170-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201212021.htm
|
[15] |
董正方, 蔡宝占, 姚毅超, 等. 反应加速度法和反应位移法精度随结构埋深变化的研究[J]. 振动与冲击, 2017, 36(14): 216-220, 244. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201714034.htm
DONG Zhengfang, CAI Baozhan, YAO Yichao, et al. Accuracy of the response acceleration method and response displacement method considering different imbedding depths of underground structures[J]. Journal of Vibration and Shock, 2017, 36(14): 216-220, 244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201714034.htm
|
[16] |
徐琨鹏, 景立平, 宾佳. 地下结构强制反应位移法和反应加速度法的对比分析[J]. 地震工程学报, 2020, 42(4): 967-972. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004020.htm
XU Kunpeng, JING Liping, BIN Jia. A comparative analysis of forced displacement and response acceleration methods for underground structures[J]. China Earthquake Engineering Journal, 2020, 42(4): 967-972. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004020.htm
|
[17] |
禹海涛, 张正伟, 李攀. 地下结构抗震设计的改进等效反应加速度法[J]. 岩土力学, 2020, 41(7): 2401-2410. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007027.htm
YU Haitao, ZHANG Zhengwei, LI Pan. Improved equivalent response acceleration method for seismic design of underground structures[J]. Rock and Soil Mechanics, 2020, 41(7): 2401-2410. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007027.htm
|
[1] | High-performance Solid-fluid Coupled Simulation Method for Geotechnical Engineering[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240382 |
[2] | GUO Hong-yan, JI Ya-ying, FANG Lin, LI Ke, TANG Cheng-ping, WANG Shi-fa. External water pressures and limited emission standards of water-rich tunnels based on fluid-solid coupling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 165-168. DOI: 10.11779/CJGE2019S1042 |
[3] | WU Fang, ZHANG Lu-lu, ZHENG Wen-tang, WEI Xin. Probabilistic back analysis method for unsaturated soil slopes with fluid-solid coupling process based on polynomial chaos expansion[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2215-2222. DOI: 10.11779/CJGE201812008 |
[4] | WU Yong-kang, WANG Xiang-nan, DONG Wei-xin, YU Yu-zhen. Dynamic analyses of a high earth-rockfill dam considering effects of solid-fluid coupling[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2007-2013. DOI: 10.11779/CJGE201511010 |
[5] | ZHOU Yi, LI Shu-cai, LI Li-ping, ZHANG Qian-qing, SHI Shao-shuai, SONG Shu-guang, WANG Kang, CHEN Di-yang, SUN Shang-qu. New technology for fluid-solid coupling tests of underground engineering and its application in experimental simulation of water inrush in filled-type karst conduit[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1232-1240. DOI: 10.11779/CJGE201507009 |
[6] | LI Liang, CUI Zhi-mou, KANG Cui-lan, WANG Xiang-bao. Fluid-solid coupling dynamic model for fluid-saturated porous media in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 281-285. |
[7] | LIU Jing, CHEN Jin-jian, WANG Jian-hua. Fluid-solid coupling analysis of multi-grade dewatering in Hongqiao transport hub[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 210-215. |
[8] | LI Li-ping, LI Shu-cai, LI Shu-chen, FENG Xian-da, LI Guo-ying, LIU Bin, WANG Jing, XU Zhen-hao. Numerical analysis and fluid-solid coupling model tests of coal mining under loose confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 679-690. |
[9] | SONG Jin-hu, MIAO Lin-chang, DAI Shi-min, MA Yuan. 3D coupled mechanical and hydraulic analysis of pore water pressure disturbed by shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 302-312. |
[10] | Xu Zenghe, Xu Xiaohe. Fluid-solid coupling problem in the liquid extraction at fixed flux[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 737-741. |
1. |
邱军领,贾玎,赖金星,唐琨杰,强磊. 含裂隙土质隧道降雨入渗双通道渗流模型. 岩土工程学报. 2025(03): 548-558 .
![]() | |
2. |
张小东,路喆津,刘敏,杨峰,赵炼恒. 强降雨作用下引入分形理论的浅层边坡入渗及稳定性分析. 哈尔滨工业大学学报. 2024(11): 140-150 .
![]() |