• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GUO Hong-yan, JI Ya-ying, FANG Lin, LI Ke, TANG Cheng-ping, WANG Shi-fa. External water pressures and limited emission standards of water-rich tunnels based on fluid-solid coupling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 165-168. DOI: 10.11779/CJGE2019S1042
Citation: GUO Hong-yan, JI Ya-ying, FANG Lin, LI Ke, TANG Cheng-ping, WANG Shi-fa. External water pressures and limited emission standards of water-rich tunnels based on fluid-solid coupling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 165-168. DOI: 10.11779/CJGE2019S1042

External water pressures and limited emission standards of water-rich tunnels based on fluid-solid coupling analysis

More Information
  • Received Date: April 29, 2019
  • Published Date: July 14, 2019
  • The external water pressures of tunnel lining structures and the limited discharge standards are the focus of tunnel construction in karst mountainous areas. Based on a water-rich tunnel, by using the FLAC3D software, the reasonable values of the external water pressures for the lining structures of the tunnel and the limited discharge standards are studied through the numerical analysis of fluid-solid coupling. The variation laws of water pressures of the tunnel with displacement without grouting is analyzed, then the values of the external water pressures of the tunnel and the standards of groundwater discharge based on the structural safety are proposed. At the same time, the variation laws of the external water pressures of the tunnel with grouting ring thickness and groundwater discharge under grouting are analyzed, the standards of groundwater discharge and the reasonable values of grouting ring thickness under different grouting thicknesses are put forward.
  • [1]
    余庆锋, 吴立. 高速铁路隧道岩溶突水发生机理研究[J]. 科学技术与工程, 2015, 15(30): 199-205.
    (YU Qing-feng WU Li. Study on karst water inrush mechanism in high-speed railway tunnel[J]. Science Technology and Engineering, 2015, 15(30): 199-205. (in Chinese))
    [2]
    刘建, 刘丹, 宋凯. 渝怀铁路歌乐山隧道排水的地下水环境负效应评价[J]. 现代隧道技术, 2012, 49(4): 179-183.
    (LIU Jian, LIU Dan, SONG Ka.Evaluation of the negative effects on groundwater environment resulted by Geleshan tunnel drainage[J]. Modern Tunnelling Technology, 2012, 49(4): 179-183. (in Chinese))
    [3]
    单士军, 李耐霞. 歌乐山隧道施工过程环境影响分析及建议[J]. 工业安全与环保, 2004, 30(11): 21-22.
    (SHAN Shi-jun, LI Nai-xia.The analysis and suggestion of environmental impact on Geleshan tunnel construction[J]. Industrial Safety and Environmental Protection, 2004, 30(11): 21-22. (in Chinese))
    [4]
    刘志春, 朱永全, 高新强, 等. 干旱山区隧道施工地下水环境保护技术研究[R]. 石家庄: 石家庄铁道大学, 2010.
    (LIU Zhi-chun, ZHU Yong-quan, GAO Xin-qiang, et al.Study on technology of groundwater environment protection during tunnel construction in the arid mountain area[R]. Shijiazhuang: Shijiazhuang Tiedao University, 2010. (in Chinese))
    [5]
    付钢, 王磊. 高压富水地层中隧道衬砌结构设计方法探讨[J]. 地下空间与工程学报, 2007, 3(2): 252-257.
    (FU Gang, WANG Lei.Study on design method of lining structure of the highway tunnel in deep-lying stratum with highwater level[J]. Chinese Journal of Under ground Space and Engineering, 2007, 3(2): 252-257. (in Chinese))
    [6]
    赵瑞, 许模, 范辰辰. 隔挡式背斜区隧道群地下水渗流场模拟演化[J]. 现代隧道技术, 2015, 52(3): 69-74.
    (ZHAO Rui, XU Mo, FAN Chen-chen.Numerical simulation of the groundwater seepage field of a tunnel group in an ejective anticline zone[J]. Modern Tunnelling Technology, 2015, 52(3): 69-74. (in Chinese))
    [7]
    刘志春, 万良勇. 地层注浆加固对隧道与地下水相互作用过程中的“双赢”影响效应分析[J]. 现代隧道技术, 2015, 52(2): 87-96.
    (LIU Zhi-chun, WAN Liang-yong.Win-win effect of ground consolidation grouting on the interaction between tunnel and groundwater[J]. Modern Tunnelling Technology, 2015, 52(2): 87-96. (in Chinese))
    [8]
    王建宇. 再谈隧道衬砌水压力[J]. 现代隧道技术, 2003, 40(3): 5-10.
    (WANG Jian-yu.Once more on hydraulic pressure upon lining[J]. Modern Tunnelling Technology, 2003, 40(3): 5-10. (in Chinese))
    [9]
    王秀英, 王梦恕, 张弥. 计算隧道排水量及衬砌外水压力的一种简化方法[J]. 北方交通大学学报, 2004, 28(1): 8-10.
    (WANG Xiu-ying, WANG Meng-shu, ZHANG Mi.A simple method to calculate tunnel discharge and external water pressure on lining[J]. Journal of Northern Jiaotong University, 2004, 28(1): 8-10. (in Chinese))
    [10]
    皇甫明, 谭忠盛, 王梦恕, 等. 暗挖海底隧道渗流量解析解及其应用[J]. 中国工程科学, 2009, 11(7): 66-70.
    (HUANGFU Ming, TAN Zhong-sheng, WANG Meng-shu, et al.An analytical solution for water inflow into a subsea tunnel and its application[J]. Journal of China Engineering Science, 2009, 11(7): 66-70. (in Chinese))
    [11]
    杨会军, 王梦恕. 深埋长大隧道渗流数值模拟[J].岩石力学与工程学报, 2006, 25(3): 511-519.
    (YANG Hui-jun, WANG Meng-shu.Numerical simulation of seepage in deep-buried long and big tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 511-519. (in Chinese))
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426
    [3]XIE Qiang, CHEN Yucheng, FU Xiang, TIAN Dalang, BAN Yuxin, XU Dongdong. Fluid-solid coupling model for discontinuous deformation analysis of unsaturated transient seepage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 299-306. DOI: 10.11779/CJGE20221026
    [4]Theoretical equation to predict permeability coefficient for unsaturated sandy soils and its application in the quality analysis of pavement drainage base layer[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20221049
    [5]YU Hai-tao, WANG Zhi-kun, LIU Zhong-xian. Influence mechanism of permeability coefficient in homogeneously saturated strata on responses of deep tunnels under incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 201-211. DOI: 10.11779/CJGE202202001
    [6]SHAO Long-tan, WEN Tian-de, GUO Xiao-xia. Direct measurement method and prediction formula for permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 806-812. DOI: 10.11779/CJGE201905002
    [7]MA Ya-wei, CHEN Wen-wu, BI Jun, GUO Gui-hong, JIAO Gui-de. Influence of dry density on coefficient of permeability of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 165-170. DOI: 10.11779/CJGE2018S1027
    [8]CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, HOU Xiao-qiang. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
    [9]CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004
    [10]Gao Ji, Lei Guangyao, Zhang Suochun. Numerical Analysis on Seepage through the Saturated and Unsaturated Soils of Levees or Dams[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(6): 28-37.
  • Cited by

    Periodical cited type(29)

    1. 王学峰,李翱翔,史国良,岳春强,张鹏. 大直径超长灌注桩承载特性研究. 山西建筑. 2025(04): 76-81 .
    2. 张高良. 复杂地质环境下桥梁钻孔灌注桩施工关键技术研究. 建筑技术. 2025(01): 61-64 .
    3. 田圆圆. 桥梁后压浆灌注桩承载特性试验研究. 运输经理世界. 2025(01): 75-77 .
    4. 韩重庆,戴璐,黄远,陈乾. 南京市中心医院综合楼原址新建项目单侧大悬挑超限高层结构设计. 建筑结构. 2024(16): 107-113+68 .
    5. 郭能荣. 后压浆桩基承载特性试验研究与分析. 交通世界. 2024(22): 150-153 .
    6. 朱文波,戴国亮,邓会元,竺明星,龚维明. 后顶扩臂压浆桩竖向承载机理及其桩盘力学性能研究. 土木工程学报. 2024(10): 82-94 .
    7. 毛龙,朱文波,杨嘉毅,李勇海,邓会元,程丹莲. 移动射流加固吸力式沉箱基础承载特性试验研究. 岩土工程学报. 2024(S2): 226-230+241 . 本站查看
    8. 夏建中,刘天豪. 不同土体条件下超灌量对桩体位移的影响分析. 浙江科技学院学报. 2023(01): 55-61 .
    9. 吴建军,龚洪兵,胡伟,陈东旭. 桥梁工程后压浆灌注桩承载特性试验研究. 交通世界. 2023(Z2): 226-228+231 .
    10. 吴征,祁熙鹏,党涛,苗苗,陈强. 黄土地层桥梁桩基后压浆技术研究进展. 市政技术. 2023(06): 91-99+106 .
    11. 臧诗齐 ,戴国亮 ,钱晓楠 . 不同注浆材料作用下后压浆桩桩-土界面力学特性分析. 东南大学学报(自然科学版). 2023(03): 496-503 .
    12. 詹伟达,欧红亮,王幸,娄学谦,刘日炜. 桩端及桩侧后注浆对超长灌注桩承载特性的影响. 公路交通科技. 2023(09): 141-150 .
    13. 史昊. 银川沈阳西路快速化改造总体设计研究. 中国水运. 2022(02): 144-146 .
    14. 翟聪,罗志聪,柳磊,王同卫,钱晓楠. 组合后压浆对灌注桩承载力的增强作用研究. 中国水运(下半月). 2022(01): 139-141 .
    15. 晁鹏飞. 超大吨位灌注桩承载力试验及数值模型研究. 城市建筑. 2022(16): 159-163 .
    16. 王贵森,洪宝宁,孙东宁,邵志伟. 联合后注浆对群桩基础工程特性的影响. 公路. 2022(09): 203-211 .
    17. 王卿,李瑜,余奇异,胡涛. 洞庭湖地区桥梁组合压浆灌注桩竖向承载性能试验研究. 建筑结构. 2022(S2): 2497-2501 .
    18. 陈祉阳,龚维明,靳朋刘,朱建民,陈新奎. 基于分布式后压浆的灌注桩承载力试验研究. 地下空间与工程学报. 2022(S2): 689-695 .
    19. 徐艺飞,万志辉,戴国亮,龚维明,高鲁超. 桩端后压浆灌注桩长期承载性能试验研究. 建筑结构学报. 2021(04): 139-146 .
    20. 邸洪江,余奇异,钱晓楠,胡涛. 高速公路桥梁大直径组合后压浆灌注桩自平衡试验研究. 中国水运(下半月). 2021(06): 131-133 .
    21. 秦鹏飞,王为林,袁媛. 岩土工程注浆技术与其应用研究. 地质与勘探. 2021(03): 631-639 .
    22. 叶新宇,彭锐,马新岩,张升,王善勇. 压密效应对新型压密注浆土钉的强化研究. 岩土工程学报. 2021(09): 1649-1656+1738 . 本站查看
    23. 薛振年,冯泓鸣,任晨宁,周志军. 黄土地区桥梁灌注桩桩侧-桩端联合压浆模型试验. 长安大学学报(自然科学版). 2021(06): 19-28 .
    24. 王灿,刘青,党智. 基于挠度的连续梁桥预应力损失分析. 中国水运. 2021(12): 154-156 .
    25. 杨纪,李孟然,黄毅,崔振华. 游荡型河道引桥桩基组合注浆工艺关键技术. 人民黄河. 2020(01): 117-120 .
    26. 万志辉,戴国亮,龚维明,竺明星,高鲁超. 不同成桩工艺对后压浆灌注桩承载特性影响的试验研究. 东南大学学报(自然科学版). 2020(02): 231-236 .
    27. 万志辉,戴国亮,高鲁超,龚维明. 大直径后压浆灌注桩承载力和沉降的实用计算方法研究. 岩土力学. 2020(08): 2746-2755 .
    28. 王丽锋,周长庚. 路面基床病害治理中高性能压浆材料的试验研究. 路基工程. 2019(03): 194-198+204 .
    29. 刘彦峰,胡晓明,马远刚,刘少成. 后注浆技术在粉细砂地层灌注桩中的应用. 桥梁建设. 2019(S1): 127-132 .

    Other cited types(16)

Catalog

    Article views (202) PDF downloads (114) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return