• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Fang, ZHANG Lu-lu, ZHENG Wen-tang, WEI Xin. Probabilistic back analysis method for unsaturated soil slopes with fluid-solid coupling process based on polynomial chaos expansion[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2215-2222. DOI: 10.11779/CJGE201812008
Citation: WU Fang, ZHANG Lu-lu, ZHENG Wen-tang, WEI Xin. Probabilistic back analysis method for unsaturated soil slopes with fluid-solid coupling process based on polynomial chaos expansion[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2215-2222. DOI: 10.11779/CJGE201812008

Probabilistic back analysis method for unsaturated soil slopes with fluid-solid coupling process based on polynomial chaos expansion

More Information
  • Received Date: October 08, 2017
  • Published Date: December 24, 2018
  • The seepage and stress-deformation in an unsaturated slope under rainfall infiltration are interacted with high nonlinearity. Numerical models are commonly adopted to solve the coupled governing equations. Tremendous computational cost of numerical modeling is the main obstacle for probabilistic back analysis with field monitoring data. A probabilistic back analysis method based on polynomial chaos expansion (PCE) is proposed in this study. PCE approximation is used to construct the explicit functions between unsaturated soil parameters and model responses to replace the original numerical model. The PCE surrogate model is adopted in parameter posterior inference with Markov chain Monte Carlo (MCMC) simulation based on the Bayesian theory. An example of unsaturated soil slope under rainfall infiltration is presented to illustrate the efficiency of the proposed method. The statistics of posterior distribution and 95% uncertainty bounds obtained using the PCE-based method are close to the results of the traditional back analysis based on the original numerical model. In addition, the proposed new method can significantly improve the efficiency of model calibration.
  • [1]
    FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, 1993.
    [2]
    ZHANG L L, ZHANG L M, TANG W H.Rainfall-induced slope failure considering variability of soil properties[J]. Géotechnique, 2005, 55(2): 183-188.
    [3]
    WONG T T, FREDLUND D G, KRAHN J.Numerical study of coupled consolidation in unsaturated soils[J]. Canadian Geotechnical Journal, 1998, 35(6): 926-937.
    [4]
    KIM J M.A fully coupled finite element analysis of water-table fluctuation and land deformation in partially saturated soils due to surface loading[J]. International Journal for Numerical Methods in Engineering, 2000, 49(9): 1101-1119.
    [5]
    徐晗, 朱以文, 蔡元奇, 等. 降雨入渗条件下非饱和土边坡稳定分析[J]. 岩土力学, 2005, 26(12): 1957-1962.
    (XU Han, ZHU Yi-wen, CAI Yuan-qi, et al.Stability analysis of unsaturated soil slopes under rainfall infiltration[J]. Rock and Soil Mechanics, 2005, 26(12): 1957-1962. (in Chinese))
    [6]
    WU L Z, ZHANG L M.Analytical solution to 1D coupled water infiltration and deformation in unsaturated soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(6): 773-790.
    [7]
    田东方, 刘德富, 王世梅, 等. 土质边坡非饱和渗流场与应力场耦合数值分析[J]. 岩土力学, 2009, 30(3): 810-814.
    (TIAN Dong-fang, LIU De-fu, WANG Shi-mei, et al.Coupling numerical analysis of unsaturated seepage and stress fields for soil slope[J]. Rock and Soil Mechanics, 2009, 30(3): 810-814. (in Chinese))
    [8]
    杨林德, 黄伟, 王聿. 初始地应力位移反分析的有限单元法[J]. 同济大学学报, 1985(4): 15-20.
    (YANG Lin-de, HUANG Wei, WANG Yu.The finite element method for determining the initial earth stress by displacements in surrounding rock[J]. Journal of Tongji University, 1985(4): 15-20. (in Chinese))
    [9]
    杨志法, 丁恩保, 张三旗. 地下工程平面问题弹性有限元图谱[M]. 北京: 科学出版社, 1989.
    (YANG Zhi-fa, DING En-bao, ZHANG San-qi.Elastic mapping finite element method for plane problem of under ground engineering[M]. Beijing: Science Press, 1989. (in Chinese))
    [10]
    黄宏伟, 孙钧. 基于Bayesian广义参数反分析[J]. 岩石力学与工程学报, 1994, 13(3): 219-228.
    (HUANG Hong-wei, SUN Jun.Generalized parameters back analysis method based on Bayesian theory[J]. Chinese Journal of Rock Mechanics and Engineering, 1994, 13(3): 219-228. (in Chinese))
    [11]
    冯夏庭, 张治强, 杨成祥, 等. 位移反分析的进化神经网络方法研究[J]. 岩石力学与工程学报, 1999, 18(5): 529-533.
    (FENG Xia-ting, ZHANG Zhi-qiang, YANG Cheng-xiang, et al.Study on genetic neural network method of displacement back analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 529-533. (in Chinese))
    [12]
    陈斌, 刘宁, 卓家寿. 岩土工程反分析的扩展贝叶斯法[J]. 岩石力学与工程学报, 2004, 23(4): 555-560.
    (CHEN Bin, LIU Ning, ZHUO Jia-shou.Extended Bayesian method of inverse analysis in geoengineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 555-560. (in Chinese))
    [13]
    ZHANG J, TANG W H, ZHANG L M.Efficient probabilistic back-analysis of slope stability model parameters[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(1): 99-109.
    [14]
    ZHANG L L, ZHANG J, ZHNAG L M, et al.Back analysis of slope failure with Markov chain Monte Carlo simulation[J]. Computers and Geotechnics, 2010, 37(7): 905-912.
    [15]
    ZHANG L L, ZUO Z B, YE G L, et al.Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope[J]. Computers and Geotechnics, 2013, 48: 72-81.
    [16]
    JUANG C H, LUO Z, ATAMTURKTUR S, et al.Bayesian updating of soil parameters for braced excavations using field observations[J]. Journal of Geotechnical and Geo- environmental Engineering, 2012, 139(3): 395-406.
    [17]
    KELLY R, HUANG J.Bayesian updating for one- dimensional consolidation measurements[J]. Canadian Geotechnical Journal, 2015, 52(9): 1318-1330.
    [18]
    LI S, ZHAO H, RU Z, et al.Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope[J]. Engineering Geology, 2016, 203: 178-190.
    [19]
    吴礼舟, 张利民, 黄润秋, 等. 非饱和土的变形与渗流耦合的一维解析分析及参数研究[J]. 岩土工程学报, 2009, 31(9): 1450-1455.
    (WU Li-zhou, ZHANG Li-ming, HUANG Run-qiu, et al.One-dimensional analytical analysis and parameter study of coupled deformation and seepage in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1450-1455. (in Chinese))
    [20]
    黄淑萍. 基于观点法的谱随机有限元分析-随机响应面法[J]. 计算力学学报, 2007, 24(2): 173-180.
    (HUANG Shu-ping.A collocation-based spectral stochastic finite element analysis-stochastic response surface approach[J]. Chinese Journal of Computational Mechanics, 2007, 24(2): 173-180. (in Chinese))
    [21]
    HUANG S P, MAHADEVAN S, REBBA R.Collocation- based stochastic finite element analysis for random field problems[J]. Probabilistic Engineering Mechanics, 2007, 22(2): 194-205.
    [22]
    HUANG S P, LIANG B, PHOON K K.Geotechnical probabilistic analysis by collocation-based stochastic response surface method: An Excel add-in implementation[J]. Georisk, 2009, 3(2): 75-86.
    [23]
    LI D Q, CHEN Y F, LU W B, et al.Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[J]. Computers & Geotechnics, 2011, 38(1): 58-68.
    [24]
    李典庆, 蒋水华, 周创兵. 基于非侵入式随机有限元法的地下洞室可靠度分析[J]. 岩土工程学报, 2012, 34(1): 123-129.
    (LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing.Reliability analysis of underground rock caverns using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 123-129. (in Chinese))
    [25]
    JIANG S H, LI D Q, CAO Z J, et al.Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2015, 141(2): 04014096.
    [26]
    BISHOP A W.The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39): 859-863.
    [27]
    FREDLUND D G, MORGENSTERN N R, WIDGER R A.The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15(3): 313-321.
    [28]
    ZHANG F, IKARIYA T.A new model for unsaturated soil using skeleton stress and degree of saturation as state variables[J]. Soils and Foundations, 2011, 51(1): 67-81.
    [29]
    RICHARD L A.Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333.
    [30]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892--898.
    [31]
    MUALEM Y.A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
    [32]
    GHANEM R G, SPANOS P D.Stochastic finite elements: a spectral approach[M]. New York: Springer-Verlag, 2003.
    [33]
    BAECHER G B, CHRISTIAN J T.Reliability and statistics in geotechnical engineering[M]. New York: John Wiley & Sons, 2005.
    [34]
    BLATMAN G, SUDRET B.An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[J]. Probabilistic Engineering Mechanics, 2010, 25(2): 183-197.
    [35]
    XIU D.Efficient collocational approach for parametric uncertainty analysis[J]. Communications in Computational Physics, 2007, 2(2): 293-309.
    [36]
    SMOLJAK S A.Quadrature and interpolation formulae on tensor products of certain function classes[J]. Doklady Akademii Nauk Sssr, 1963, 4(5): 240-243.
    [37]
    NOBILE F, TEMPONE R, WEBSTER C G.A sparse grid stochastic collocation method for partial differential equations with random input data[J]. SIAM Journal on Numerical Analysis, 2008, 46(5): 2309-2345.
    [38]
    LALOY E, ROGIERS B, VRUGT J A, et al.Efficient posterior exploration of a high-dimensional groundwater model from two-stage Markov chain Monte Carlo simulation and polynomial chaos expansion[J]. Water Resources Research, 2013, 49(5): 2664-2682.
    [39]
    BOX G E P, TIAO G C. Bayesian inference in statistical analysis[M]. New York: John Wiley & Sons, 2011.
    [40]
    VRUGT J A, TER BRAAK C J F, CLARK M P, et al. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation[J]. Water Resources Research, 2008, 44(12): 5121-5127.
    [41]
    GELMAN A, RUBIN D B.Inference from iterative simulation using multiple sequences[J]. Statistical Science, 1992: 457-472.
    [42]
    ZHANG L L, LI J H, LI X, et al.Rainfall-induced soil slope failure: stability analysis and probabilistic assessment[M]. Boca Raton: CRC Press, 2016.

Catalog

    Article views (358) PDF downloads (228) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return