• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YAO Yangping, WU Xiaotian, CUI Wenjie. Influences of 3D model generalization approach on calculation of stress and strain of soils under plane strain[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 459-467. DOI: 10.11779/CJGE20211389
Citation: YAO Yangping, WU Xiaotian, CUI Wenjie. Influences of 3D model generalization approach on calculation of stress and strain of soils under plane strain[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 459-467. DOI: 10.11779/CJGE20211389

Influences of 3D model generalization approach on calculation of stress and strain of soils under plane strain

More Information
  • Received Date: December 24, 2021
  • Available Online: March 15, 2023
  • To describe the shear yield and failure behavior of soils in the generalized 3D stress space, the critical state constitutive model needs to be combined with some strength criteria. The use of various 3D model generalization approaches is frequently highly important in characterizing the impacts of stress Lode angle and deviatoric stress on stress and strain, especially under plane strain. The unified hardening (UH) constitutive model for K0 consolidated soils and the spatially mobilized plane (SMP) strength criterion are used as examples, and the transform stress (TS) and g(θ) methods are adopted for the 3D model generalization. The 3D elastoplastic stiffness matrix [Dep] associated with each model generalization approach is deduced, and the key difference between various approaches for calculating 3D stress and strain is discussed. The TS method, in comparison to the g(θ) method, is able to transform the yield curve on the π plane from a nearly circular shape under a low stress ratio to the shape of the SMP strength criterion at failure, which demonstrates the consistency from yield to failure. Predictions of a series of plane strain element tests and boundary value problems are performed with the 3D UH model generalized by the TS and g(θ) methods. The results show that the predicted results from the TS method are more consistent with the existing experimental measurements. Due to the irregular shape of the failure surface when using the g(θ) method, the estimated stress level is often either too high or too low under plane strain for K0-consolidated soils.
  • [1]
    WROTH C, HOULSBY G. Soil mechanics-property characterization and analysis procedures[C]// Proc of 11th Int Conf on SMFE, San Francisce, 1985.
    [2]
    ZIENKIEWICZ O. Some useful forms of isotropic yield surfaces for soil and rock mechanics[C]// Finite Elements in Geomechanics. London: John Wileye Sons, 1977.
    [3]
    POTTS D M, GENS A. The effect of the plastic potential in boundary value problems involving plane strain deformation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(3): 259-286. doi: 10.1002/nag.1610080305
    [4]
    MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95. doi: 10.3208/sandf.39.81
    [5]
    ROUAINIA M, MUIR WOOD D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153-164. doi: 10.1680/geot.2000.50.2.153
    [6]
    LI X S. A sand model with state-dapendent dilatancy[J]. Géotechnique, 2002, 52(3): 173-186. doi: 10.1680/geot.2002.52.3.173
    [7]
    DAFALIAS Y F, MANZARI M T, PAPADIMITRIOU A G. SANICLAY: simple anisotropic clay plasticity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(12): 1231-1257. doi: 10.1002/nag.524
    [8]
    YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
    [9]
    CHOWDHURY E Q, NAKAI T R, TAWADA M, et al. A model for clay using modified stress under various loading conditions with the application of subloading concept[J]. Soils and Foundations, 1999, 39(6): 103-116. doi: 10.3208/sandf.39.6_103
    [10]
    GRAMMATIKOPOULOU A, ZDRAVKOVIC L, POTTS D M. General formulation of two kinematic hardening constitutive models with a smooth elastoplastic transition[J]. International Journal of Geomechanics, 2006, 6(5): 291-302. doi: 10.1061/(ASCE)1532-3641(2006)6:5(291)
    [11]
    GRAMMATIKOPOULOU A, ZDRAVKOVIC L, POTTS D M. The effect of the yield and plastic potential deviatoric surfaces on the failure height of an embankment[J]. Géotechnique, 2007, 57(10): 795-806. doi: 10.1680/geot.2007.57.10.795
    [12]
    HASHIGUCHI K. A proposal of the simplest convex-conical surface for soils[J]. Soils and Foundations, 2002, 42(3): 107-113. doi: 10.3208/sandf.42.3_107
    [13]
    NAKAI T R, HINOKIO M. A simple elastoplastic model for normally and over consolidated soils with unified material parameters[J]. Soils and Foundations, 2004, 44(2): 53-70. doi: 10.3208/sandf.44.2_53
    [14]
    YAO Y P, SUN D A. Application of lade's criterion to cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112)
    [15]
    YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199
    [16]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [17]
    YAO Y, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54-78. doi: 10.1002/nag.2545
    [18]
    孙徳安, 松冈元, 姚仰平, 等. 初期异方性を考虑した黏土と砂の统一的な弾塑性构成式[C]// 土木学会论文集, 1999.

    SUN Dean, MATSUOKA H, YAO Yangping, et al. An anisotropic unified hardening elastoplastic model for clays and sands[C]// Preceedings of Japan Society of Civil Engineers, 1999. (in Japanese)
    [19]
    SUN D A, YAO Y P, MATSUOKA H. Modification of critical state models by Mohr-Coulomb criterion[J]. Mechanics Research Communications, 2006, 33(2): 217-232. doi: 10.1016/j.mechrescom.2005.05.006
    [20]
    YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685
    [21]
    CHEN S L, ABOUSLEIMAN Y N. Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil[J]. Géotechnique, 2012, 62(5): 447-456. doi: 10.1680/geot.11.P.027
    [22]
    CHEN S L, LIU K. Undrained cylindrical cavity expansion in anisotropic critical state soils[J]. Géotechnique, 2019, 69(3): 189-202. doi: 10.1680/jgeot.16.P.335
    [23]
    武孝天, 徐永福. 基于CSUH模型的砂/黏土不排水柱孔扩张统一解[J]. 岩土工程学报, 2021, 43(6): 1019-1028. doi: 10.11779/CJGE202106005

    WU Xiaotian, XU Yongfu. Undrained unified solutions to cylindrical cavity expansion in soils and sands based on CSUH model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1019-1028. (in Chinese) doi: 10.11779/CJGE202106005
    [24]
    武孝天, 徐永福. 超固结土中排水圆孔扩张弹塑性UH解[J]. 岩土工程学报, 2020, 42(10): 1903-1913. doi: 10.11779/CJGE202010016

    WU Xiaotian, XU Yongfu. Elasto-plastic solution for drained cavity expansion in over-consolidated soil incorporating three-dimensional unified hardening model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1903-1913. (in Chinese) doi: 10.11779/CJGE202010016
  • Other Related Supplements

  • Cited by

    Periodical cited type(5)

    1. 姚兆明,唐赛,昌语,李鹏辉. 冻结改良土抗压特性分数阶模型可靠性分析. 河南城建学院学报. 2025(01): 44-51 .
    2. 骆亚生,赵程斌,孙哲,范全,牛雨欣,李斌. 基于塑性元件微元化的重塑黄土黏弹塑性本构模型. 岩土工程学报. 2024(03): 624-631 . 本站查看
    3. 孙增春,刘汉龙,肖杨. 砂-粉混合料的分数阶塑性本构模型. 岩土工程学报. 2024(08): 1596-1604 . 本站查看
    4. 孙增春,陈萌,肖杨,樊恒辉. 考虑状态相关的饱和黏土热弹塑性本构模型. 中国科学:技术科学. 2024(10): 2030-2041 .
    5. 李亮,陆勇,朱文轩,范存新. 砂土统一模型的显式计算及加载速度影响研究. 力学季刊. 2023(03): 720-730 .

    Other cited types(5)

Catalog

    Article views (419) PDF downloads (128) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return