Citation: | YAO Yangping, WU Xiaotian, CUI Wenjie. Influences of 3D model generalization approach on calculation of stress and strain of soils under plane strain[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 459-467. DOI: 10.11779/CJGE20211389 |
[1] |
WROTH C, HOULSBY G. Soil mechanics-property characterization and analysis procedures[C]// Proc of 11th Int Conf on SMFE, San Francisce, 1985.
|
[2] |
ZIENKIEWICZ O. Some useful forms of isotropic yield surfaces for soil and rock mechanics[C]// Finite Elements in Geomechanics. London: John Wileye Sons, 1977.
|
[3] |
POTTS D M, GENS A. The effect of the plastic potential in boundary value problems involving plane strain deformation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(3): 259-286. doi: 10.1002/nag.1610080305
|
[4] |
MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95. doi: 10.3208/sandf.39.81
|
[5] |
ROUAINIA M, MUIR WOOD D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153-164. doi: 10.1680/geot.2000.50.2.153
|
[6] |
LI X S. A sand model with state-dapendent dilatancy[J]. Géotechnique, 2002, 52(3): 173-186. doi: 10.1680/geot.2002.52.3.173
|
[7] |
DAFALIAS Y F, MANZARI M T, PAPADIMITRIOU A G. SANICLAY: simple anisotropic clay plasticity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(12): 1231-1257. doi: 10.1002/nag.524
|
[8] |
YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
|
[9] |
CHOWDHURY E Q, NAKAI T R, TAWADA M, et al. A model for clay using modified stress under various loading conditions with the application of subloading concept[J]. Soils and Foundations, 1999, 39(6): 103-116. doi: 10.3208/sandf.39.6_103
|
[10] |
GRAMMATIKOPOULOU A, ZDRAVKOVIC L, POTTS D M. General formulation of two kinematic hardening constitutive models with a smooth elastoplastic transition[J]. International Journal of Geomechanics, 2006, 6(5): 291-302. doi: 10.1061/(ASCE)1532-3641(2006)6:5(291)
|
[11] |
GRAMMATIKOPOULOU A, ZDRAVKOVIC L, POTTS D M. The effect of the yield and plastic potential deviatoric surfaces on the failure height of an embankment[J]. Géotechnique, 2007, 57(10): 795-806. doi: 10.1680/geot.2007.57.10.795
|
[12] |
HASHIGUCHI K. A proposal of the simplest convex-conical surface for soils[J]. Soils and Foundations, 2002, 42(3): 107-113. doi: 10.3208/sandf.42.3_107
|
[13] |
NAKAI T R, HINOKIO M. A simple elastoplastic model for normally and over consolidated soils with unified material parameters[J]. Soils and Foundations, 2004, 44(2): 53-70. doi: 10.3208/sandf.44.2_53
|
[14] |
YAO Y P, SUN D A. Application of lade's criterion to cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112)
|
[15] |
YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199
|
[16] |
YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
|
[17] |
YAO Y, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54-78. doi: 10.1002/nag.2545
|
[18] |
孙徳安, 松冈元, 姚仰平, 等. 初期异方性を考虑した黏土と砂の统一的な弾塑性构成式[C]// 土木学会论文集, 1999.
SUN Dean, MATSUOKA H, YAO Yangping, et al. An anisotropic unified hardening elastoplastic model for clays and sands[C]// Preceedings of Japan Society of Civil Engineers, 1999. (in Japanese)
|
[19] |
SUN D A, YAO Y P, MATSUOKA H. Modification of critical state models by Mohr-Coulomb criterion[J]. Mechanics Research Communications, 2006, 33(2): 217-232. doi: 10.1016/j.mechrescom.2005.05.006
|
[20] |
YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685
|
[21] |
CHEN S L, ABOUSLEIMAN Y N. Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil[J]. Géotechnique, 2012, 62(5): 447-456. doi: 10.1680/geot.11.P.027
|
[22] |
CHEN S L, LIU K. Undrained cylindrical cavity expansion in anisotropic critical state soils[J]. Géotechnique, 2019, 69(3): 189-202. doi: 10.1680/jgeot.16.P.335
|
[23] |
武孝天, 徐永福. 基于CSUH模型的砂/黏土不排水柱孔扩张统一解[J]. 岩土工程学报, 2021, 43(6): 1019-1028. doi: 10.11779/CJGE202106005
WU Xiaotian, XU Yongfu. Undrained unified solutions to cylindrical cavity expansion in soils and sands based on CSUH model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1019-1028. (in Chinese) doi: 10.11779/CJGE202106005
|
[24] |
武孝天, 徐永福. 超固结土中排水圆孔扩张弹塑性UH解[J]. 岩土工程学报, 2020, 42(10): 1903-1913. doi: 10.11779/CJGE202010016
WU Xiaotian, XU Yongfu. Elasto-plastic solution for drained cavity expansion in over-consolidated soil incorporating three-dimensional unified hardening model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1903-1913. (in Chinese) doi: 10.11779/CJGE202010016
|
1. |
姚兆明,唐赛,昌语,李鹏辉. 冻结改良土抗压特性分数阶模型可靠性分析. 河南城建学院学报. 2025(01): 44-51 .
![]() | |
2. |
骆亚生,赵程斌,孙哲,范全,牛雨欣,李斌. 基于塑性元件微元化的重塑黄土黏弹塑性本构模型. 岩土工程学报. 2024(03): 624-631 .
![]() | |
3. |
孙增春,刘汉龙,肖杨. 砂-粉混合料的分数阶塑性本构模型. 岩土工程学报. 2024(08): 1596-1604 .
![]() | |
4. |
孙增春,陈萌,肖杨,樊恒辉. 考虑状态相关的饱和黏土热弹塑性本构模型. 中国科学:技术科学. 2024(10): 2030-2041 .
![]() | |
5. |
李亮,陆勇,朱文轩,范存新. 砂土统一模型的显式计算及加载速度影响研究. 力学季刊. 2023(03): 720-730 .
![]() |