Citation: | LUO Yasheng, ZHAO Chengbin, SUN Zhe, FAN Quan, NIU Yuxin, LI Bin. Visco-elastoplastic constitutive model for remolded loess based on infinitesimalization of plastic elements[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 624-631. DOI: 10.11779/CJGE20221452 |
[1] |
TOSHIHISA A, FUSAO O, MASASHI K. An Elasto- viscoplastic constitutive model with strain-softening for soft sedimentary rocks[J]. Soils and Foundations, 2005, 45(2): 125-133 doi: 10.3208/sandf.45.2_125
|
[2] |
胡再强, 王凯, 李宏儒, 等. 人工制备遗址土非线性蠕变本构模型研究[J]. 岩土工程学报, 2021, 43(增刊1): 13-18. doi: 10.11779/CJGE2021S1003
HU Zaiqiang, WANG Kai, LI Hongru, et al. Nonlinear creep constitutive model for artificially prepared site soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 13-18(in Chinese) doi: 10.11779/CJGE2021S1003
|
[3] |
邓会元, 戴国亮, 邱国阳, 等. 杭州湾淤泥质粉质黏土排水蠕变试验及元件蠕变模型[J]. 东南大学学报(自然科学版), 2021, 51(2): 318-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202102019.htm
DENG Huiyuan, DAI Guoliang, QIU Guoyang, et al. Drained creep test and component creep model of soft silty clay in Hangzhou Bay[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(2): 318-324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202102019.htm
|
[4] |
徐辉, 王靖涛, 张光永. 基于细观力学分析的砂土弹塑性本构模型[J]. 固体力学学报, 2006, 27(3): 249-254. doi: 10.3969/j.issn.0254-7805.2006.03.006
XU Hui, WANG Jingtao, ZHANG Guangyong. An elastic-plastic constitutive model for sand based on micromechanics method[J]. Acta Mechanica Solida Sinica, 2006, 27(3): 249-254. (in Chinese) doi: 10.3969/j.issn.0254-7805.2006.03.006
|
[5] |
姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832. http://cge.nhri.cn/cn/article/id/14436
YAO Yangping, YU Yani. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832. (in Chinese) http://cge.nhri.cn/cn/article/id/14436
|
[6] |
姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. doi: 10.3321/j.issn:1000-6915.2009.10.023
YAO Yangping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023
|
[7] |
何冠, 姚仰平. 统一硬化模型与下加载面模型的理论关系[J]. 岩土力学, 2022, 43(增刊2): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2002.htm
HE Guan, YAO Yangping. Theoretical relation between unified hardening model and sub-loading surface model[J]. Rock and Soil Mechanics, 2022, 43(S2): 11-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2002.htm
|
[8] |
路德春, 金辰逸, 梁靖宇, 等. 考虑状态相关的砂土非正交弹塑性本构模型[J]. 岩土工程学报, 2023, 45(2): 221-231. doi: 10.11779/CJGE20211457
LU Dechun, JIN Chenyi, LIANG Jingyu, et al. State-dependent non-orthogonal elastoplastic constitutive model for sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 221-231. (in Chinese) doi: 10.11779/CJGE20211457
|
[9] |
AMOROSI A, KAVVADAS M. A. constitutive model for structured soils[J]. Géotechnique, 2000, 50(3): 263-273. doi: 10.1680/geot.2000.50.3.263
|
[10] |
谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 2004.
XIE Dingyi. Soil Dynamics[M]. Xi'an: Xi'an Jiaotong University Press, 2004. (in Chinese)
|
[11] |
穆锐, 黄质宏, 浦少云, 等. 循环荷载下原状红黏土的累积变形特征及动本构关系研究[J]. 岩土力学, 2020, 41(增刊2): 1-10.
MU Rui, HUANG Zhihong, PU Shaoyun, et al. Accumulated deformation characteristics of undisturbed red clay under cyclic loading and dynamic constitutive relationship[J]. Rock and Soil Mechanics, 2020, 41(S2): 1-10. (in Chinese)
|
[12] |
崔凯, 李永奎. 川西崩坡积混合土循环荷载下非饱和动本构模型[J]. 岩土力学, 2017, 38(8): 2157-2166. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708002.htm
CUI Kai, LI Yongkui. Study on constitutive model of unsaturated Chuanxi talus mixed soil under cyclic loading[J]. Rock and Soil Mechanics, 2017, 38(8): 2157-2166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708002.htm
|
[13] |
魏尧, 杨更社, 申艳军, 等. 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008015.htm
WEI Yao, YANG Gengshe, SHEN Yanjun, et al. Creep test and constitutive model of Cretaceous saturated frozen sandstone[J]. Rock and Soil Mechanics, 2020, 41(8): 2636-2646. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008015.htm
|
[14] |
LIAN B Q, WANG X G, ZHAN H B, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589. doi: 10.1016/j.enggeo.2022.106589
|
[15] |
MANUELA C S, CRISTELO N, ROUAINIA M, et al. Constitutive behaviour of a clay stabilised with alkali-activated cement based on blast furnace slag[J]. Sustainability, 2022, 14(21): 13736-13757 doi: 10.3390/su142113736
|
[16] |
LI Z X, WANG J D, YANG S, et al. Characteristics of microstructural changes of malan loess in Yan'an area during creep test[J]. Water, 2022, 14(3): 438-460 doi: 10.3390/w14030438
|
[17] |
黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983.
HUANG Wenxi. Engineering Properties of Soil[M]. Beijing: Water Resources and Hydropower Press, 1983. (in Chinese)
|
[1] | TANG Yang, ZHENG Ming-fei, SHI Shi-yong. Model tests on thermal response of phase-change pile in saturated silt foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 139-142. DOI: 10.11779/CJGE2022S2030 |
[2] | ZENG Zhao-jun, TANG Chao-sheng, CHENG Qing, AN Ni, SHI Bin. Influences of water phase change/migration factors in hydro-thermal coupling model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 40-45. DOI: 10.11779/CJGE2022S1008 |
[3] | XIAO Ze-an, HOU Zhen-rong, DONG Xiao-qiang. Phase transition of pore solution in saline soil during cooling process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1174-1180. DOI: 10.11779/CJGE202006024 |
[4] | HU Ya-yuan, DING Pan. Three-dimensional rheological model for double-yield surface based on equivalent time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 53-62. DOI: 10.11779/CJGE202001006 |
[5] | ZHANG Peng-wei, HU Li-ming, Meegoda Jay N, Celia Michael A. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. DOI: 10.11779/CJGE202001004 |
[6] | HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023 |
[7] | GAO Guang-yun, SHI Chao, CHEN Qing-sheng. A predictive model on equivalent number of strain cycles for earthquake loads[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2040-2044. DOI: 10.11779/CJGE201511014 |
[8] | ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. |
[9] | SHAO Shengjun, WANG Ting, YU Qinggao. Equivalent consolidation deformation properties and one-dimensional analysis method of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1037-1045. |
[10] | ZHANG Yujun. Equivalent model and numerical analysis and laboratory test for jointed rockmasses[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 29-32. |