• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LUO Yasheng, ZHAO Chengbin, SUN Zhe, FAN Quan, NIU Yuxin, LI Bin. Visco-elastoplastic constitutive model for remolded loess based on infinitesimalization of plastic elements[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 624-631. DOI: 10.11779/CJGE20221452
Citation: LUO Yasheng, ZHAO Chengbin, SUN Zhe, FAN Quan, NIU Yuxin, LI Bin. Visco-elastoplastic constitutive model for remolded loess based on infinitesimalization of plastic elements[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 624-631. DOI: 10.11779/CJGE20221452

Visco-elastoplastic constitutive model for remolded loess based on infinitesimalization of plastic elements

More Information
  • Received Date: November 22, 2022
  • Available Online: June 05, 2023
  • Based on the theory of infinitesimalization of plastic elements and infinite series, the visco-elastoplastic constitutive model for remolded loess is established through the triaxial creep tests under loading and unloading conditions and verified by the dynamic triaxial test, and the corresponding parameter indexes are obtained. The research shows that the constitutive model can well describes the creep, static and dynamic characteristics of the remolded loess and it more reasonably explain the variation characteristics of rebound curve under unloading conditions. In addition, the processing method for the infinitesimalization of plastic elements makes up for the shortcomings that plastic deformation is not easy to describe in the previous visco-elastoplastic constitutive model. Compared with other visco-elastoplastic constitutive models, the proposed model is simpler and more widely used.
  • [1]
    TOSHIHISA A, FUSAO O, MASASHI K. An Elasto- viscoplastic constitutive model with strain-softening for soft sedimentary rocks[J]. Soils and Foundations, 2005, 45(2): 125-133 doi: 10.3208/sandf.45.2_125
    [2]
    胡再强, 王凯, 李宏儒, 等. 人工制备遗址土非线性蠕变本构模型研究[J]. 岩土工程学报, 2021, 43(增刊1): 13-18. doi: 10.11779/CJGE2021S1003

    HU Zaiqiang, WANG Kai, LI Hongru, et al. Nonlinear creep constitutive model for artificially prepared site soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 13-18(in Chinese) doi: 10.11779/CJGE2021S1003
    [3]
    邓会元, 戴国亮, 邱国阳, 等. 杭州湾淤泥质粉质黏土排水蠕变试验及元件蠕变模型[J]. 东南大学学报(自然科学版), 2021, 51(2): 318-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202102019.htm

    DENG Huiyuan, DAI Guoliang, QIU Guoyang, et al. Drained creep test and component creep model of soft silty clay in Hangzhou Bay[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(2): 318-324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202102019.htm
    [4]
    徐辉, 王靖涛, 张光永. 基于细观力学分析的砂土弹塑性本构模型[J]. 固体力学学报, 2006, 27(3): 249-254. doi: 10.3969/j.issn.0254-7805.2006.03.006

    XU Hui, WANG Jingtao, ZHANG Guangyong. An elastic-plastic constitutive model for sand based on micromechanics method[J]. Acta Mechanica Solida Sinica, 2006, 27(3): 249-254. (in Chinese) doi: 10.3969/j.issn.0254-7805.2006.03.006
    [5]
    姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832. http://cge.nhri.cn/cn/article/id/14436

    YAO Yangping, YU Yani. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832. (in Chinese) http://cge.nhri.cn/cn/article/id/14436
    [6]
    姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. doi: 10.3321/j.issn:1000-6915.2009.10.023

    YAO Yangping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023
    [7]
    何冠, 姚仰平. 统一硬化模型与下加载面模型的理论关系[J]. 岩土力学, 2022, 43(增刊2): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2002.htm

    HE Guan, YAO Yangping. Theoretical relation between unified hardening model and sub-loading surface model[J]. Rock and Soil Mechanics, 2022, 43(S2): 11-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2002.htm
    [8]
    路德春, 金辰逸, 梁靖宇, 等. 考虑状态相关的砂土非正交弹塑性本构模型[J]. 岩土工程学报, 2023, 45(2): 221-231. doi: 10.11779/CJGE20211457

    LU Dechun, JIN Chenyi, LIANG Jingyu, et al. State-dependent non-orthogonal elastoplastic constitutive model for sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 221-231. (in Chinese) doi: 10.11779/CJGE20211457
    [9]
    AMOROSI A, KAVVADAS M. A. constitutive model for structured soils[J]. Géotechnique, 2000, 50(3): 263-273. doi: 10.1680/geot.2000.50.3.263
    [10]
    谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 2004.

    XIE Dingyi. Soil Dynamics[M]. Xi'an: Xi'an Jiaotong University Press, 2004. (in Chinese)
    [11]
    穆锐, 黄质宏, 浦少云, 等. 循环荷载下原状红黏土的累积变形特征及动本构关系研究[J]. 岩土力学, 2020, 41(增刊2): 1-10.

    MU Rui, HUANG Zhihong, PU Shaoyun, et al. Accumulated deformation characteristics of undisturbed red clay under cyclic loading and dynamic constitutive relationship[J]. Rock and Soil Mechanics, 2020, 41(S2): 1-10. (in Chinese)
    [12]
    崔凯, 李永奎. 川西崩坡积混合土循环荷载下非饱和动本构模型[J]. 岩土力学, 2017, 38(8): 2157-2166. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708002.htm

    CUI Kai, LI Yongkui. Study on constitutive model of unsaturated Chuanxi talus mixed soil under cyclic loading[J]. Rock and Soil Mechanics, 2017, 38(8): 2157-2166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708002.htm
    [13]
    魏尧, 杨更社, 申艳军, 等. 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008015.htm

    WEI Yao, YANG Gengshe, SHEN Yanjun, et al. Creep test and constitutive model of Cretaceous saturated frozen sandstone[J]. Rock and Soil Mechanics, 2020, 41(8): 2636-2646. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008015.htm
    [14]
    LIAN B Q, WANG X G, ZHAN H B, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589. doi: 10.1016/j.enggeo.2022.106589
    [15]
    MANUELA C S, CRISTELO N, ROUAINIA M, et al. Constitutive behaviour of a clay stabilised with alkali-activated cement based on blast furnace slag[J]. Sustainability, 2022, 14(21): 13736-13757 doi: 10.3390/su142113736
    [16]
    LI Z X, WANG J D, YANG S, et al. Characteristics of microstructural changes of malan loess in Yan'an area during creep test[J]. Water, 2022, 14(3): 438-460 doi: 10.3390/w14030438
    [17]
    黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983.

    HUANG Wenxi. Engineering Properties of Soil[M]. Beijing: Water Resources and Hydropower Press, 1983. (in Chinese)
  • Related Articles

    [1]TANG Yang, ZHENG Ming-fei, SHI Shi-yong. Model tests on thermal response of phase-change pile in saturated silt foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 139-142. DOI: 10.11779/CJGE2022S2030
    [2]ZENG Zhao-jun, TANG Chao-sheng, CHENG Qing, AN Ni, SHI Bin. Influences of water phase change/migration factors in hydro-thermal coupling model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 40-45. DOI: 10.11779/CJGE2022S1008
    [3]XIAO Ze-an, HOU Zhen-rong, DONG Xiao-qiang. Phase transition of pore solution in saline soil during cooling process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1174-1180. DOI: 10.11779/CJGE202006024
    [4]HU Ya-yuan, DING Pan. Three-dimensional rheological model for double-yield surface based on equivalent time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 53-62. DOI: 10.11779/CJGE202001006
    [5]ZHANG Peng-wei, HU Li-ming, Meegoda Jay N, Celia Michael A. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. DOI: 10.11779/CJGE202001004
    [6]HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023
    [7]GAO Guang-yun, SHI Chao, CHEN Qing-sheng. A predictive model on equivalent number of strain cycles for earthquake loads[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2040-2044. DOI: 10.11779/CJGE201511014
    [8]ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
    [9]SHAO Shengjun, WANG Ting, YU Qinggao. Equivalent consolidation deformation properties and one-dimensional analysis method of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1037-1045.
    [10]ZHANG Yujun. Equivalent model and numerical analysis and laboratory test for jointed rockmasses[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 29-32.
  • Cited by

    Periodical cited type(3)

    1. 裴书锋,郝文锋,樊义林,陈浩,李文涛. 大型水利水电工程锚固系统运行状况分析. 长江科学院院报. 2024(02): 142-150 .
    2. 苏都都,范勇,吴进高,杨广栋,冷振东. 穿越断层破碎带深埋洞室爆破开挖围岩破坏机理研究进展. 三峡大学学报(自然科学版). 2024(04): 25-34 .
    3. 周嵩,潘岳,刘永胜,谢韬,张理蒙,张继超. 极高地应力破碎地层斜井进正洞力学行为分析及施工优化研究. 现代隧道技术. 2024(04): 142-150 .

    Other cited types(4)

Catalog

    Article views (324) PDF downloads (73) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return