Citation: | SUN Zengchun, LIU Hanlong, XIAO Yang. Fractional-order plasticity model for sand-silt mixtures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1596-1604. DOI: 10.11779/CJGE20230666 |
[1] |
吴琪, 陈国兴, 周正龙, 等. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究[J]. 岩土工程学报, 2018, 40(6): 475-485. doi: 10.11779/CJGE201803011
WU Qi, CHEN Guoxing, ZHOU Zhenglong, et al. Experimental investigation on liquefaction resistance of fine-coarse-grained soil mixtures based on theory of intergrain contact state[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 475-485. (in Chinese) doi: 10.11779/CJGE201803011
|
[2] |
李涛, 赵洪扬, 翁勃航, 等. 细颗粒形状和含量对钙质混合砂强度的影响试验研究[J]. 岩土工程学报, 2023, 45(7): 1517-1525. doi: 10.11779/CJGE20220535
LI Tao, ZHAO Hongyang, WENG Bohang, et al. Experimental study on effects of shape and content of fine particles on strength of calcareous mixed sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1517-1525. (in Chinese) doi: 10.11779/CJGE20220535
|
[3] |
YILMAZ Y, DENG Y, CHANG CS, et al. Strength-dilatancy and critical state behaviours of binary mixtures of graded sands influenced by particle size ratio and fines content[J]. Géotechnique, 2023, 73(3): 202-217. doi: 10.1680/jgeot.20.P.320
|
[4] |
LADE P V, YAMAMURO J A. Effects of nonplastic fines on static liquefaction of sands[J]. Canadian Geotechnical Journal, 1997, 34(6): 918-928. doi: 10.1139/t97-052
|
[5] |
RAHMAN M M, LO S R, BAKI MAL. Equivalent granular state parameter and undrained behaviour of sand-fines mixtures[J]. Acta Geotechnica, 2011, 6(4): 183-194. doi: 10.1007/s11440-011-0145-4
|
[6] |
MONKUL M M, ETMINAN E, ŞENOL A. Coupled influence of content, gradation and shape characteristics of silts on static liquefaction of loose silty sands[J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 12-26. doi: 10.1016/j.soildyn.2017.06.023
|
[7] |
GOBBI S, SANTISI D M P, LENTI L, et al. Effect of active plastic fine fraction on undrained behavior of binary granular mixtures[J]. International Journal of Geomechanics, 2022, 22(1): 06021035. doi: 10.1061/(ASCE)GM.1943-5622.0002242
|
[8] |
CHANG C S, YIN Z Y. Micromechanical modeling for behavior of silty sand with influence of fine content[J]. International Journal of Solids and Structures, 2011, 48(19): 2655-2667. doi: 10.1016/j.ijsolstr.2011.05.014
|
[9] |
RAHMAN M M, LO S R, DAFALIAS Y F. Modelling the static liquefaction of sand with low-plasticity fines[J]. Géotechnique, 2014, 64(11): 881-894. doi: 10.1680/geot.14.P.079
|
[10] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
|
[11] |
XU L Y, ZHANG J Z, CAI F, et al. Constitutive modeling the undrained behaviors of sands with non-plastic fines under monotonic and cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2019, 123: 413-424. doi: 10.1016/j.soildyn.2019.05.021
|
[12] |
WEI X, YANG J. A critical state constitutive model for clean and silty sand[J]. Acta Geotechnica, 2019, 14(2): 329-345.
|
[13] |
SUN Z C, CHU J, XIAO Y. Formulation and implementation of an elastoplastic constitutive model for sand-fines mixtures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(18): 2682-2708. doi: 10.1002/nag.3282
|
[14] |
李晓强, 梁靖宇, 路德春, 等. 非饱和土的非正交弹塑性本构模型[J]. 中国科学: 技术科学, 2022, 52(7): 1048-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202207006.htm
LI Xiaoqiang, LIANG Jingyu, LU Dechun, et al. Non- orthogonal elastoplastic constitutive model for unsaturated soil[J]. SCIENTIA SINICA Technologica, 2022, 52(7): 1048-1064. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202207006.htm
|
[15] |
YAO Y P, HE G, LUO T. Study on determining the plastic flow direction of soils with dilatancy[J]. Acta Geotechnica, 2023, 18(5): 2411-2425. doi: 10.1007/s11440-022-01770-8
|
[16] |
SUN Y F, SHEN Y. Constitutive model of granular soils using fractional-order plastic-flow rule[J]. International Journal of Geomechanics, 2017, 17(8): 04017025. doi: 10.1061/(ASCE)GM.1943-5622.0000904
|
[17] |
LU D C, LIANG J Y, DU X L, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Computers and Geotechnics, 2019, 105: 277-290. doi: 10.1016/j.compgeo.2018.10.004
|
[18] |
路德春, 金辰逸, 梁靖宇, 等. 考虑状态相关的砂土非正交弹塑性本构模型[J]. 岩土工程学报, 2023, 45(2): 221-231. doi: 10.11779/CJGE20211457
(LU Dechun, JIN Chenyi, LIANG Jingyu, et al. State-dependent non-orthogonal elastoplastic constitutive model for sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 221-231. doi: 10.11779/CJGE20211457
|
[19] |
汪成贵, 束善治, 肖杨, 等. 考虑钙质砂颗粒破碎的分数阶边界面本构模型[J]. 岩土工程学报, 2023, 45(6): 1162-1170. doi: 10.11779/CJGE20220229
WANG Chenggui, SHU Shanzhi, XIAO Yang, et al. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. (in Chinese) doi: 10.11779/CJGE20220229
|
[20] |
THEVANAYAGAM S, SHENTHAN T, MOHAN S, et al. Undrained fragility of clean sands, silty sands, and sandy silts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 849-859. doi: 10.1061/(ASCE)1090-0241(2002)128:10(849)
|
[21] |
CHANG C S, DENG Y. Revisiting the concept of inter- granular void ratio in view of particle packing theory[J]. Géotechnique Letters, 2019, 9(2): 121-129. doi: 10.1680/jgele.18.00175
|
[22] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
|
[23] |
MURTHY T G, LOUKIDIS D, CARRARO J A H, et al. Undrained monotonic response of clean and silty sands[J]. Géotechnique, 2007, 57(3): 273-288. doi: 10.1680/geot.2007.57.3.273
|
[24] |
GOUDARZY M, SARKAR D, LIESKE W, et al. Influence of plastic fines content on the liquefaction susceptibility of sands: monotonic loading[J]. Acta Geotechnica, 2022, 17(5): 1719-1737. doi: 10.1007/s11440-021-01283-w
|
[25] |
ZHU Z H, DUPLA J C, CANOU J, et al. Experimental study of liquefaction resistance: effect of non-plastic silt content on sand matrix[J]. European Journal of Environmental and Civil Engineering, 2022, 26(7): 2671-2689. doi: 10.1080/19648189.2020.1765198
|
[26] |
LÜ X L, XUE D W, ZHANG B, et al. Experimental studies and constitutive modeling of static liquefaction instability in sand-clay mixtures[J]. International Journal of Geomechanics, 2022, 22(9): 04022149. doi: 10.1061/(ASCE)GM.1943-5622.0002472
|
[27] |
YAO Y P, HOU W, ZHOU A N. UH model: Three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
|
[28] |
GOUDARZY M, RAHEMI N, RAHMAN M M, et al. Predicting the maximum shear modulus of sands containing nonplastic fines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(9): 06017013. doi: 10.1061/(ASCE)GT.1943-5606.0001760
|
[29] |
孙增春, 汪成贵, 刘汉龙, 等. 粗粒土边界面塑性模型及其积分算法[J]. 岩土力学, 2020, 41(12): 3957-3967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm
SUN Zengchun, WANG Chenggui, LIU Hanlong, et al. Bounding surface plasticity model for granular soil and its integration algorithm[J]. Rock and Soil Mechanics, 2020, 41(12): 3957-3967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm
|
[30] |
XIAO Y, SUN Y F, LIU H L, et al. Model predictions for behaviors of sand-nonplastic-fines mixtures using equivalent- skeleton void-ratio state index[J]. Science China Technological Sciences, 2017, 60(6): 878-892. doi: 10.1007/s11431-016-9024-9
|
[31] |
XIAO Y, LIU H L, CHEN Y M, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. doi: 10.1061/(ASCE)EM.1943-7889.0000702
|
[1] | ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122 |
[2] | TANG Zhao-guang, WANG Yong-zhi, WANG Meng-wei, SUN Rui, LIU Yuan-peng, YANG yang. Incremental model for pore water pressure and its applicability in centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 25-29. DOI: 10.11779/CJGE2022S2006 |
[3] | WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023 |
[4] | WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008 |
[5] | CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001 |
[6] | ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013 |
[7] | WANG Zhi-hua, LÜ Cong, XU Zhen-wei, ZHOU En-quan, CHEN Guo-xing. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. DOI: 10.11779/CJGE201410010 |
[8] | WANG Jun, CAI Yuan-qiang, GUO Lin, YANG Fang. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354. |
[9] | WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533. |
[10] | CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82. |