Citation: | LU Xian-long, CHEN Xiang-sheng, CHEN Xi. Risk prevention and control of artificial ground freezing (AGF)[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2308-2314. DOI: 10.11779/CJGE202112018 |
[1] |
陈湘生, 崔宏志, 苏栋, 等. 建设超大韧性城市(群)之思考[J]. 劳动保护, 2020(3): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBH202003009.htm
CHEN Xiang-sheng, CUI Hong-zhi, SU Dong, et al. Considerations on the construction of super large and resilient city and city group[J]. Labor Protection. 2020(3): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBH202003009.htm
|
[2] |
陈湘生. 地层冻结法[M]. 北京: 人民交通出版社, 2013.
CHEN Xiang-sheng. Ground Freezing Method[M]. Beijing: China Communications Press, 2013. (in Chinese)
|
[3] |
陈湘生. 人工冻结粘土力学特性研究及冻土地基离心模型试验[D]. 北京: 清华大学, 1999.
CHEN Xiang-sheng. Study on Mechanical Characteristics of Frozen Clays and Centrifugal Modelling Test of Frozen Soils[D]. Beijing: Tsinghua University, 1999. (in Chinese)
|
[4] |
崔托维奇. 冻土力学[M]. 张长庆, 等译. 北京: 科学出版社, 1985.
ЧЬЛТОВИЧ Н А. Frozen Soil Mechanics[M]. ZHANG Chang-qing, et al. trans. Beijing: Science Press, 1985. (in Chinese)
|
[5] |
周扬, 周国庆, 周金生, 等. 饱和土冻结透镜体生长过程水热耦合分析[J]. 岩土工程学报, 2010, 32(4): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004018.htm
ZHOU Yang, ZHOU Guo-qing, ZHOU Jin-sheng, et al. Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 578-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004018.htm
|
[6] |
赵晓东, 周国庆. 温度梯度冻土蠕变变形规律和非均质特征[J]. 岩土工程学报, 2014, 36(2): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402021.htm
ZHAO Xiao-dong, ZHOU Guo-qing. Creep deformation and heterogeneous characteristics for frozen soils with thermal gradient[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 390-394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402021.htm
|
[7] |
ALZOUBI M A, XU M H, HASSANI F P, et al. Artificial ground freezing: a review of thermal and hydraulic aspects[J]. Tunnelling and Underground Space Technology, 2020, 104: 103534. doi: 10.1016/j.tust.2020.103534
|
[8] |
MARWAN A, ZHOU M M, ZAKI ABDELREHIM M, et al. Optimization of artificial ground freezing in tunneling in the presence of seepage flow[J]. Computers and Geotechnics, 2016, 75: 112-125. doi: 10.1016/j.compgeo.2016.01.004
|
[9] |
翁家杰, 周希圣, 王朝晖, 等. 冻土扩展的热平衡与流水速度对冻结的影响[J]. 地下工程与隧道, 1998(2): 2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC199802000.htm
WENG Jia-jie, ZHOU Xi-sheng, WANG Zhao-hui, et al. Heat balance of frozen soil development and influence of water velocity on freezing[J]. Underground Engineering and Tunnels, 1998(2): 2-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC199802000.htm
|
[10] |
杨维好, 杨志江, 韩涛, 等. 基于与围岩相互作用的冻结壁弹性设计理论[J]. 岩土工程学报, 2012, 34(3): 516-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203024.htm
YANG Wei-hao, YANG Zhi-jiang, HAN Tao, et al. Elastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 516-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203024.htm
|
[11] |
杨维好, 杨志江, 柏东良. 基于与围岩相互作用的冻结壁弹塑性设计理论[J]. 岩土工程学报, 2013, 35(1): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301021.htm
YANG Wei-hao, YANG Zhi-jiang, BO Dong-liang. The elastic-plastic design theory of frozen soil wall based on the interaction between frozen wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 175-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301021.htm
|
[12] |
杨维好, 杜子博, 杨志江, 等. 基于与围岩相互作用的冻结壁塑性设计理论[J]. 岩土工程学报, 2013, 35(10): 1857-1862. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301021.htm
YANG Wei-hao, DU Zi-bo, YANG Zhi-jiang, et al. Plastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1857-1862. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301021.htm
|
[13] |
张博, 杨维好, 王宝生. 考虑大变形特征的超深冻结壁弹塑性设计理论[J]. 岩土工程学报, 2019, 41(7): 1288-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907015.htm
ZHANG Bo, YANG Wei-hao, WANG Bao-sheng. Elastoplastic design theory for ultra-deep frozen wall considering large deformation features[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1288-1295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907015.htm
|
[14] |
陈湘生. 冻土力学之研究:21世纪岩土力学的重要领域之一[J]. 煤炭学报, 1998, 23(1): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB801.010.htm
CHEN Xiang-sheng. Study ON frozen soil mechanics—one OF the important field OF rock and soil mechanics IN 21st century[J]. Journal of China Coal Society, 1998, 23(1): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB801.010.htm
|
[15] |
杨平, 赵联桢, 王国良. 冻土与结构接触面循环剪切损伤模型[J]. 岩土力学, 2016, 37(5): 1217-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605001.htm
YANG Ping, ZHAO Lian-zhen, WANG Guo-liang. A damage model for frozen soil-structure interface under cyclic shearing[J]. Rock and Soil Mechanics, 2016, 37(5): 1217-1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605001.htm
|
[16] |
石泉彬, 杨平, 于可, 等. 冻土与结构接触面次峰值冻结强度试验研究[J]. 岩土力学, 2018, 39(6): 2025-2033. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806014.htm
SHI Quan-bin, YANG Ping, YU Ke, et al. Sub peak adfreezing strength at the interface between frozen soil and structures[J]. Rock and Soil Mechanics. 2018, 39(6): 2025-2033. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806014.htm
|
[17] |
崔广心. 深土冻土力学—冻土力学发展的新领域[J]. 冰川冻土, 1998, 20(2): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT802.000.htm
CUI Guang-xin. Mechanics of frozen soil for deep alluvium—a new field of frozen soil mechanics[J]. Journal of Glaciology and Geocryology, 1998, 20(2): 97-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT802.000.htm
|
[18] |
赵晓东, 周国庆, 李生生. 不同温度梯度冻结深部黏土偏应力演变规律研究[J]. 岩石力学与工程学报, 2009, 28(8): 1646-1651. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200908021.htm
ZHAO Xiao-dong, ZHOU Guo-qing, LI Sheng-sheng. Research on deviatoric stress variation laws for deep frozen clay at different temperature gradients[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1646-1651. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200908021.htm
|
[19] |
胡向东. 直线形单排管冻土帷幕平均温度计算方法[J]. 冰川冻土, 2010, 32(4): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201004019.htm
HU Xiang-dong. Average temperature calculation for the straight single-row-pipe frozen soil wall[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 142-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201004019.htm
|
[20] |
宋雷, 张小俊, 杨维好, 等. 人工冻结工程地质雷达模型试验研究[J]. 岩土工程学报, 2012, 34(1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201011.htm
SONG Lei, ZHANG Xiao-jun, YANG Wei-hao, et al. Experimental study on GPR model for artificial freezing projects[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 115-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201011.htm
|
[21] |
杨平, 李强. 冻土力学性能与声波参数相关性试验研究[J]. 岩土工程学报, 1997, 19(4): 707-713. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC704.012.htm
YANG Ping, LI Qiang. Experimental study on the relationship between strength of frozen soil waves penetrating parameters[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 707-713. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC704.012.htm
|
[22] |
张基伟, 刘书杰, 张松, 等. 富水砂层冻结壁形成过程声场响应特征研究[J]. 岩土工程学报, 2020, 42(12): 2230-2239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012012.htm
ZHANG Ji-wei, LIU Shu-jie, ZHANG Song, et. al. Response characteristics of sound fields of stratum frozen wall of water-rich sand during developing process[J]. Chinese Journal of Geotechnical Engineering. 2020, 42(12): 2230-2239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012012.htm
|
[23] |
岳丰田, 张水宾, 李文勇, 等. 地铁联络通道冻结加固融沉注浆研究[J]. 岩土力学, 2008, 29(8): 2283-2286. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808057.htm
YUE Feng-tian, ZHANG Shui-bin, LI Wen-yong, et al. Study on thaw settlement grouting applied to connected aisle construction with artificial ground freezing method in metro tunnel[J]. Rock and Soil Mechanics, 2008, 29(8): 2283-2286. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808057.htm
|
1. |
杨哲,蔡海兵,王彬,李孟凯,庞昌强. 高流速富水砂层地铁隧道液氮冻结温度场演化规律研究. 铁道科学与工程学报. 2025(01): 307-319 .
![]() | |
2. |
谭智勇,王超林,龙安发. 外部水源作用下岩石液氮冻结试验研究. 岩土工程学报. 2024(02): 415-425 .
![]() | |
3. |
刘爽,李晓康,李旭,聂雯,林旸,盛志刚. 渗流作用下粗粒土冻结壁交圈规律及预测模型探索. 冰川冻土. 2024(01): 247-259 .
![]() | |
4. |
刘欣,冯利华,任全军,沈宇鹏,韩昀希,刘越,韩风雷. 渗流地层地铁联络通道冻结壁形成过程及其影响因素分析. 中南大学学报(自然科学版). 2024(04): 1463-1476 .
![]() | |
5. |
孙立强,时鹏,郎瑞卿,商安策. 渗流作用下人工冻结特性室内模型试验研究. 岩石力学与工程学报. 2024(S1): 3530-3542 .
![]() | |
6. |
孙立强,商安策,郎瑞卿,苗雨. 渗流地层人工冻结壁交圈时间计算方法. 岩石力学与工程学报. 2023(S1): 3663-3673 .
![]() | |
7. |
樊文虎,杨平,王升福. 粉质黏土冻融前后细观结构试验研究. 森林工程. 2023(03): 182-190 .
![]() | |
8. |
宋帅,姜艳,尹文纲. 冻结法施工中渗流场对温度场的影响分析. 徐州工程学院学报(自然科学版). 2023(04): 68-76 .
![]() | |
9. |
荣传新,王彬,程桦,董艳宾,杨凡. 大流速渗透地层人工冻结壁形成机制室内模型试验研究. 岩石力学与工程学报. 2022(03): 596-613 .
![]() | |
10. |
陈盈盈,周桂云,余长青. 渗流对人工冻结温度场影响的研究. 四川水泥. 2022(03): 61-63 .
![]() | |
11. |
刘利. 冻结法施工在某隧道扩挖中的应用. 市政技术. 2022(04): 144-148+192 .
![]() | |
12. |
李忠超,白天麒,梁荣柱,肖铭钊,蔡兵华,叶超,吴文兵. 富水粉细砂层水平冻结效果试验及数值模拟. 工业建筑. 2022(03): 1-9 .
![]() | |
13. |
黄建华,严耿明,覃少杰. 液氮冻结加固冻结管内换热机制及对流换热系数研究. 岩土力学. 2022(09): 2624-2633 .
![]() | |
14. |
徐陈明,胡俊,熊辉,林小淇,周禹暄,冯继超,王志鑫. 一种基坑坑底加固结构温度场变化规律研究. 海南大学学报(自然科学版). 2022(04): 434-440 .
![]() | |
15. |
丁飞,张鲁鲁,曹新刚,李远荣,汪亦显. 微冻结法盾构隧道衬砌管片冻结性能参数试验研究. 工程与建设. 2022(05): 1379-1381+1416 .
![]() | |
16. |
赵象卓,王春林,王宇,李彦民,姬强,闫永乐. 富水岩层井筒超长冻结自然解冻趋势与注浆技术. 煤炭工程. 2021(08): 43-48 .
![]() | |
17. |
刘娟. 江底强渗透地层冻结法可行性分析. 江西建材. 2021(08): 193-195 .
![]() | |
18. |
周洁,李泽垚,田万君. 渗流作用对人工冻结土体特性的影响. 铁道工程学报. 2021(07): 12-17 .
![]() | |
19. |
汪恩良,任志凤,韩红卫,田雨,胡胜博,刘兴超. 超低温冻结黏土单轴抗压力学性质试验研究. 岩土工程学报. 2021(10): 1851-1860 .
![]() | |
20. |
周扬,武子寒,许程,卢萌盟,周国庆. 高温下饱和冻土一维融化热固结模型及解答. 岩土工程学报. 2021(12): 2190-2199 .
![]() |