• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LU Xian-long, CHEN Xiang-sheng, CHEN Xi. Risk prevention and control of artificial ground freezing (AGF)[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2308-2314. DOI: 10.11779/CJGE202112018
Citation: LU Xian-long, CHEN Xiang-sheng, CHEN Xi. Risk prevention and control of artificial ground freezing (AGF)[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2308-2314. DOI: 10.11779/CJGE202112018

Risk prevention and control of artificial ground freezing (AGF)

More Information
  • Received Date: March 08, 2021
  • Available Online: November 30, 2022
  • The artificial ground freezing method (AGF), a special construction method, has a history of almost 160 years. It is still a flexible, and reliable environment-protection geotechnical-support method to solve the three difficulties of groundwater, soft soils, and unpredictable deformation encountered in underground engineering. It is the core of AGF to freeze the water in stratum into ice by artificial refrigeration. However, it is the existence of ice that maintains the strength of frozen soils and leads to frozen soils being much more changeable and sensitive, which makes the AGF have some risks in engineering. In this study, the characteristics of artificial frozen soils and the corresponding risk of AGF engineering are elucidated based on the basic principles of the phase change process and dynamic balance of water in frozen soils, water migration during soil freezing, and the internal connection of frozen soils. Then, based on the AGF construction process, the risk prevention and control method of AGF are put forward from three aspects: strictly controlling the reliability of design input data, strictly controlling the quality of freezing system, strictly controlling the safe operation and maintenance during the whole processes of freezing and excavation, which will provide a new guidance for the application of the AGF in underground engineering construction in the future.
  • [1]
    陈湘生, 崔宏志, 苏栋, 等. 建设超大韧性城市(群)之思考[J]. 劳动保护, 2020(3): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBH202003009.htm

    CHEN Xiang-sheng, CUI Hong-zhi, SU Dong, et al. Considerations on the construction of super large and resilient city and city group[J]. Labor Protection. 2020(3): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBH202003009.htm
    [2]
    陈湘生. 地层冻结法[M]. 北京: 人民交通出版社, 2013.

    CHEN Xiang-sheng. Ground Freezing Method[M]. Beijing: China Communications Press, 2013. (in Chinese)
    [3]
    陈湘生. 人工冻结粘土力学特性研究及冻土地基离心模型试验[D]. 北京: 清华大学, 1999.

    CHEN Xiang-sheng. Study on Mechanical Characteristics of Frozen Clays and Centrifugal Modelling Test of Frozen Soils[D]. Beijing: Tsinghua University, 1999. (in Chinese)
    [4]
    崔托维奇. 冻土力学[M]. 张长庆, 等译. 北京: 科学出版社, 1985.

    ЧЬЛТОВИЧ Н А. Frozen Soil Mechanics[M]. ZHANG Chang-qing, et al. trans. Beijing: Science Press, 1985. (in Chinese)
    [5]
    周扬, 周国庆, 周金生, 等. 饱和土冻结透镜体生长过程水热耦合分析[J]. 岩土工程学报, 2010, 32(4): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004018.htm

    ZHOU Yang, ZHOU Guo-qing, ZHOU Jin-sheng, et al. Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 578-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004018.htm
    [6]
    赵晓东, 周国庆. 温度梯度冻土蠕变变形规律和非均质特征[J]. 岩土工程学报, 2014, 36(2): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402021.htm

    ZHAO Xiao-dong, ZHOU Guo-qing. Creep deformation and heterogeneous characteristics for frozen soils with thermal gradient[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 390-394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402021.htm
    [7]
    ALZOUBI M A, XU M H, HASSANI F P, et al. Artificial ground freezing: a review of thermal and hydraulic aspects[J]. Tunnelling and Underground Space Technology, 2020, 104: 103534. doi: 10.1016/j.tust.2020.103534
    [8]
    MARWAN A, ZHOU M M, ZAKI ABDELREHIM M, et al. Optimization of artificial ground freezing in tunneling in the presence of seepage flow[J]. Computers and Geotechnics, 2016, 75: 112-125. doi: 10.1016/j.compgeo.2016.01.004
    [9]
    翁家杰, 周希圣, 王朝晖, 等. 冻土扩展的热平衡与流水速度对冻结的影响[J]. 地下工程与隧道, 1998(2): 2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC199802000.htm

    WENG Jia-jie, ZHOU Xi-sheng, WANG Zhao-hui, et al. Heat balance of frozen soil development and influence of water velocity on freezing[J]. Underground Engineering and Tunnels, 1998(2): 2-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC199802000.htm
    [10]
    杨维好, 杨志江, 韩涛, 等. 基于与围岩相互作用的冻结壁弹性设计理论[J]. 岩土工程学报, 2012, 34(3): 516-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203024.htm

    YANG Wei-hao, YANG Zhi-jiang, HAN Tao, et al. Elastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 516-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203024.htm
    [11]
    杨维好, 杨志江, 柏东良. 基于与围岩相互作用的冻结壁弹塑性设计理论[J]. 岩土工程学报, 2013, 35(1): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301021.htm

    YANG Wei-hao, YANG Zhi-jiang, BO Dong-liang. The elastic-plastic design theory of frozen soil wall based on the interaction between frozen wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 175-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301021.htm
    [12]
    杨维好, 杜子博, 杨志江, 等. 基于与围岩相互作用的冻结壁塑性设计理论[J]. 岩土工程学报, 2013, 35(10): 1857-1862. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301021.htm

    YANG Wei-hao, DU Zi-bo, YANG Zhi-jiang, et al. Plastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1857-1862. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301021.htm
    [13]
    张博, 杨维好, 王宝生. 考虑大变形特征的超深冻结壁弹塑性设计理论[J]. 岩土工程学报, 2019, 41(7): 1288-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907015.htm

    ZHANG Bo, YANG Wei-hao, WANG Bao-sheng. Elastoplastic design theory for ultra-deep frozen wall considering large deformation features[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1288-1295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907015.htm
    [14]
    陈湘生. 冻土力学之研究:21世纪岩土力学的重要领域之一[J]. 煤炭学报, 1998, 23(1): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB801.010.htm

    CHEN Xiang-sheng. Study ON frozen soil mechanics—one OF the important field OF rock and soil mechanics IN 21st century[J]. Journal of China Coal Society, 1998, 23(1): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB801.010.htm
    [15]
    杨平, 赵联桢, 王国良. 冻土与结构接触面循环剪切损伤模型[J]. 岩土力学, 2016, 37(5): 1217-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605001.htm

    YANG Ping, ZHAO Lian-zhen, WANG Guo-liang. A damage model for frozen soil-structure interface under cyclic shearing[J]. Rock and Soil Mechanics, 2016, 37(5): 1217-1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605001.htm
    [16]
    石泉彬, 杨平, 于可, 等. 冻土与结构接触面次峰值冻结强度试验研究[J]. 岩土力学, 2018, 39(6): 2025-2033. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806014.htm

    SHI Quan-bin, YANG Ping, YU Ke, et al. Sub peak adfreezing strength at the interface between frozen soil and structures[J]. Rock and Soil Mechanics. 2018, 39(6): 2025-2033. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806014.htm
    [17]
    崔广心. 深土冻土力学—冻土力学发展的新领域[J]. 冰川冻土, 1998, 20(2): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT802.000.htm

    CUI Guang-xin. Mechanics of frozen soil for deep alluvium—a new field of frozen soil mechanics[J]. Journal of Glaciology and Geocryology, 1998, 20(2): 97-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT802.000.htm
    [18]
    赵晓东, 周国庆, 李生生. 不同温度梯度冻结深部黏土偏应力演变规律研究[J]. 岩石力学与工程学报, 2009, 28(8): 1646-1651. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200908021.htm

    ZHAO Xiao-dong, ZHOU Guo-qing, LI Sheng-sheng. Research on deviatoric stress variation laws for deep frozen clay at different temperature gradients[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1646-1651. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200908021.htm
    [19]
    胡向东. 直线形单排管冻土帷幕平均温度计算方法[J]. 冰川冻土, 2010, 32(4): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201004019.htm

    HU Xiang-dong. Average temperature calculation for the straight single-row-pipe frozen soil wall[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 142-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201004019.htm
    [20]
    宋雷, 张小俊, 杨维好, 等. 人工冻结工程地质雷达模型试验研究[J]. 岩土工程学报, 2012, 34(1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201011.htm

    SONG Lei, ZHANG Xiao-jun, YANG Wei-hao, et al. Experimental study on GPR model for artificial freezing projects[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 115-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201011.htm
    [21]
    杨平, 李强. 冻土力学性能与声波参数相关性试验研究[J]. 岩土工程学报, 1997, 19(4): 707-713. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC704.012.htm

    YANG Ping, LI Qiang. Experimental study on the relationship between strength of frozen soil waves penetrating parameters[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 707-713. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC704.012.htm
    [22]
    张基伟, 刘书杰, 张松, 等. 富水砂层冻结壁形成过程声场响应特征研究[J]. 岩土工程学报, 2020, 42(12): 2230-2239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012012.htm

    ZHANG Ji-wei, LIU Shu-jie, ZHANG Song, et. al. Response characteristics of sound fields of stratum frozen wall of water-rich sand during developing process[J]. Chinese Journal of Geotechnical Engineering. 2020, 42(12): 2230-2239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012012.htm
    [23]
    岳丰田, 张水宾, 李文勇, 等. 地铁联络通道冻结加固融沉注浆研究[J]. 岩土力学, 2008, 29(8): 2283-2286. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808057.htm

    YUE Feng-tian, ZHANG Shui-bin, LI Wen-yong, et al. Study on thaw settlement grouting applied to connected aisle construction with artificial ground freezing method in metro tunnel[J]. Rock and Soil Mechanics, 2008, 29(8): 2283-2286. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808057.htm
  • Cited by

    Periodical cited type(20)

    1. 杨哲,蔡海兵,王彬,李孟凯,庞昌强. 高流速富水砂层地铁隧道液氮冻结温度场演化规律研究. 铁道科学与工程学报. 2025(01): 307-319 .
    2. 谭智勇,王超林,龙安发. 外部水源作用下岩石液氮冻结试验研究. 岩土工程学报. 2024(02): 415-425 . 本站查看
    3. 刘爽,李晓康,李旭,聂雯,林旸,盛志刚. 渗流作用下粗粒土冻结壁交圈规律及预测模型探索. 冰川冻土. 2024(01): 247-259 .
    4. 刘欣,冯利华,任全军,沈宇鹏,韩昀希,刘越,韩风雷. 渗流地层地铁联络通道冻结壁形成过程及其影响因素分析. 中南大学学报(自然科学版). 2024(04): 1463-1476 .
    5. 孙立强,时鹏,郎瑞卿,商安策. 渗流作用下人工冻结特性室内模型试验研究. 岩石力学与工程学报. 2024(S1): 3530-3542 .
    6. 孙立强,商安策,郎瑞卿,苗雨. 渗流地层人工冻结壁交圈时间计算方法. 岩石力学与工程学报. 2023(S1): 3663-3673 .
    7. 樊文虎,杨平,王升福. 粉质黏土冻融前后细观结构试验研究. 森林工程. 2023(03): 182-190 .
    8. 宋帅,姜艳,尹文纲. 冻结法施工中渗流场对温度场的影响分析. 徐州工程学院学报(自然科学版). 2023(04): 68-76 .
    9. 荣传新,王彬,程桦,董艳宾,杨凡. 大流速渗透地层人工冻结壁形成机制室内模型试验研究. 岩石力学与工程学报. 2022(03): 596-613 .
    10. 陈盈盈,周桂云,余长青. 渗流对人工冻结温度场影响的研究. 四川水泥. 2022(03): 61-63 .
    11. 刘利. 冻结法施工在某隧道扩挖中的应用. 市政技术. 2022(04): 144-148+192 .
    12. 李忠超,白天麒,梁荣柱,肖铭钊,蔡兵华,叶超,吴文兵. 富水粉细砂层水平冻结效果试验及数值模拟. 工业建筑. 2022(03): 1-9 .
    13. 黄建华,严耿明,覃少杰. 液氮冻结加固冻结管内换热机制及对流换热系数研究. 岩土力学. 2022(09): 2624-2633 .
    14. 徐陈明,胡俊,熊辉,林小淇,周禹暄,冯继超,王志鑫. 一种基坑坑底加固结构温度场变化规律研究. 海南大学学报(自然科学版). 2022(04): 434-440 .
    15. 丁飞,张鲁鲁,曹新刚,李远荣,汪亦显. 微冻结法盾构隧道衬砌管片冻结性能参数试验研究. 工程与建设. 2022(05): 1379-1381+1416 .
    16. 赵象卓,王春林,王宇,李彦民,姬强,闫永乐. 富水岩层井筒超长冻结自然解冻趋势与注浆技术. 煤炭工程. 2021(08): 43-48 .
    17. 刘娟. 江底强渗透地层冻结法可行性分析. 江西建材. 2021(08): 193-195 .
    18. 周洁,李泽垚,田万君. 渗流作用对人工冻结土体特性的影响. 铁道工程学报. 2021(07): 12-17 .
    19. 汪恩良,任志凤,韩红卫,田雨,胡胜博,刘兴超. 超低温冻结黏土单轴抗压力学性质试验研究. 岩土工程学报. 2021(10): 1851-1860 . 本站查看
    20. 周扬,武子寒,许程,卢萌盟,周国庆. 高温下饱和冻土一维融化热固结模型及解答. 岩土工程学报. 2021(12): 2190-2199 . 本站查看

    Other cited types(8)

Catalog

    Article views (333) PDF downloads (247) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return