Citation: | WANG Yan, WANG Ai-hua, LIU Gan-bin. Experimental study on remediation of chromium-contaminated mucky clay by electrokinetic soil flushing method considering temperature[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1542-1549. DOI: 10.11779/CJGE202108020 |
[1] |
张亭亭, 魏明俐, 熊欢, 等. 多硫化钙对铬污染土的稳定性能及铬赋存形态试验研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 4282-4289. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2064.htm
ZHANG Ting-ting, WEI Ming-li, XIONG Huan, et al. Chromium speciation and leaching behaviors of chromium contaminated soil stabilized by calcium polysulfide[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4282-4289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2064.htm
|
[2] |
朱文会, 李志涛, 王夏晖, 等. 不同异位修复工艺对高浓度铬渣污染土体中Cr的去除特性[J]. 化工学报, 2018, 69(6): 2730-2736. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201806049.htm
ZHU Wen-hui, LI Zhi-tao, WANG Xia-hui, et al. Characteristics of chromium removing using different ex-situ remediations in soil seriously contaminated by chromite ore processing residue[J]. Journal of Chemical Industry and Engineering(China), 2018, 69(6): 2730-2736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201806049.htm
|
[3] |
刘仕业, 岳昌盛, 彭犇, 等. 铬污染毒性土壤清洁修复研究进展与综合评价[J]. 工程科学学报, 2018, 40(11): 1275-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201811001.htm
LIU Shi-ye, YUE Chang-sheng, PENG Ben, et al. Research progress on remediation technologies of chromium-contaminated soil: a review[J]. Chinese Journal of Engineering, 2018, 40(11): 1275-1287. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201811001.htm
|
[4] |
张亭亭, 何星星, 王平, 等. 粒径和pH值对铬污染土稳定性能的影响规律及机制分析[J]. 岩土力学, 2017, 38(增刊2): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2012.htm
ZHANG Ting-ting, HE Xing-xing, WANG Ping, et al. Influence of particle size and pH on stability of chromium contaminated soil and its mechanism analysis[J]. Rock and Soil Mechanics, 2017, 38(S2): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2012.htm
|
[5] |
GITIPOUR S, AHMADI S, MADADIAN E, et al. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent[J]. Environmental Technology, 2016, 37(1): 141-151.
|
[6] |
ZOU Q, GAO Y, YI S, et al. Multi-step column leaching using low-molecular-weight organic acids for remediating vanadium-and chromium-contaminated soil[J]. Environmental Science and Pollution Research, 2019, 26(15): 15406-15413. doi: 10.1007/s11356-019-04915-7
|
[7] |
KANIA M, GAUTIER M, BLANC D, et al. Leaching behavior of major and trace elements from sludge deposits of a French vertiOAl flow constructed wetland[J]. Science of The Total Environment, 2019, 649: 544-553. doi: 10.1016/j.scitotenv.2018.08.364
|
[8] |
郑复乐, 姚荣江, 杨劲松, 等. 淋洗液对沿海滩涂设施土体重金属的洗脱效应[J]. 中国环境科学, 2018, 38(11): 4218-4227. doi: 10.3969/j.issn.1000-6923.2018.11.030
ZHENG Fu-le, YAO Rong-jiang, YANG Jing-song, et al. Eluting effects of different eluents on heavy metals in greenhouse soils from coastal mudflat area[J]. China Environmental Science, 2018, 38(11): 4218-4227. (in Chinese) doi: 10.3969/j.issn.1000-6923.2018.11.030
|
[9] |
LI D, JI G, HU J, et al. Remediation strategy and electrochemistry flushing & reduction technology for real Cr(VI)-contaminated soils[J]. Chemical Engineering Journal, 2018, 334: 1281-1288. doi: 10.1016/j.cej.2017.11.074
|
[10] |
蔡国庆, 赵成刚, 刘艳. 一种预测不同温度下非饱和土相对渗透系数的间接方法[J]. 岩土力学, 2011, 32(5): 1405-1410. doi: 10.3969/j.issn.1000-7598.2011.05.020
CAI Guo-qing, ZHAO Cheng-gang, LIU Yan. An indirect method for predicting permeability coefficients of unsaturated soils at different temperatures[J]. Rock and Soil Mechanics, 2011, 32(5): 1405-1410. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.05.020
|
[11] |
王媛, 施斌, 高磊, 等. 黏性土渗透性温度效应实验研究[J]. 工程地质学报, 2010, 18(3): 351-356. doi: 10.3969/j.issn.1004-9665.2010.03.010
WANG Yuan, SHI Bin, GAO Lei, et al. Laboratory tests for temperature effects of clayey soil permeability[J]. Journal of Engineering Geology, 2010, 18(3): 351-356. (in Chinese) doi: 10.3969/j.issn.1004-9665.2010.03.010
|
[12] |
SAKELLARIOU L, PAPASSIOPI N. An approach to electrokinetic removal of Cr(VI) from soil and kaolin samples[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(6): 718-724. doi: 10.1007/s00128-018-2432-3
|
[13] |
蔡光华, 陆海军, 刘松玉. 温度梯度下压实黏土的水热迁移规律和渗透特性[J]. 东北大学学报(自然科学版), 2017, 38(6): 874-879. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201706023.htm
CAI Guang-hua, LU Hai-jun, LIU Song-yu. Moisture-heat migration laws and permeability of compacted clay under temperature gradient[J]. Journal of Northeastern University (Natural Science), 2017, 38(6): 874-879. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201706023.htm
|
[14] |
DU W, ZOU H, SUN Y C, et al. Surfactant-enhanced electrokinetic remediation of chromium and phenanthrene cross-polluted soils[J]. Environmental Engineering Science, 2017, 34(12): 908-916. doi: 10.1089/ees.2016.0567
|
[15] |
ACAR Y B, ALSHAWABKEH A N. Principles of Electro- kinetic remediation[J]. Environmental Science Technology, 1993, 27(13): 2638-2647. doi: 10.1021/es00049a002
|
[16] |
FU R, WEN D, CHEN X, et al. Treatment of decabromodiphenyl ether (BDE209) contaminated soil by solubilizer-enhanced electrokinetics coupled with ZVI-PRB[J]. Environmental Science and Pollution Research, 2017, 24(15): 13509-13518. doi: 10.1007/s11356-017-8919-3
|
[17] |
WAN Y, ZHAI J, WANG A, et al. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(VI)-contaminated soil[J]. Ekoloji, 2019, 28(107): 873-881.
|
[18] |
LI D, SUN D L, HU S Y, et al. Environmental research on remediation of cd-contaminated soil by electrokinetic remediation[J]. Chemosphere, 2016, 144: 1823-1830. doi: 10.1016/j.chemosphere.2015.09.077
|
[19] |
HUANG C H, YUAN C, WU M H, et al. Electrochemical degradation of ibuprofen-contaminated soils over Fe/Al oxidation electrodes[J]. Science of The Total Environment, 2018, 640: 1205-1213.
|
[20] |
SHU J, SUN X, LIU R, et al. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents[J]. Ecotoxicology and Environmental Safety, 2019, 171: 523-529. doi: 10.1016/j.ecoenv.2019.01.025
|
[21] |
CHEN W, KIRKELUND G M, JENSEN P E, et al. Electrodialytic extraction of Cr from water-washed MSWI fly ash by changing pH and redox conditions[J]. Waste Management, 2018, 71: 215-223. doi: 10.1016/j.wasman.2017.09.035
|
[22] |
KUMAR V, CHITHRA K. Removal of Cr (VI) from spiked soils by electrokinetics[J]. Research Journal of Chemistry and Environment, 2013, 17(8): 52-59.
|
[1] | HUANG Xiaohu, WEI Zhaoheng, YI Wu, GUO Fei, HUANG Haifeng, XIAO Yuhuang. Mechanism of fracture preferential flow infiltration-induced shallow damage of colluvial landslides[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1136-1145. DOI: 10.11779/CJGE20230090 |
[2] | ZHANG Zhao, ZHU Liangyu, LI Guangyao, YUAN Haoyu, GAO Shuaidong, HAN Huaqiang, LIU Fengyin, QI Jilin. Analytical model for preferential infiltration into cracks in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1831-1840. DOI: 10.11779/CJGE20220856 |
[3] | KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463 |
[4] | ZHANG Peng-wei, ZHOU Yang-xin, GAO Wen-zhe, LIU Bao-guo. Multiphase flow computational model for extraction of gas hydrates in marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 80-84. DOI: 10.11779/CJGE2022S1015 |
[5] | ZHAO Kuan-yao, XU Qiang, LIU Fang-zhou, ZHANG Xian-lin. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 941-950. DOI: 10.11779/CJGE202005017 |
[6] | ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. DOI: 10.11779/CJGE202001005 |
[7] | ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316-1321. DOI: 10.11779/CJGE201807019 |
[8] | KE Han, WU Xiao-wen, ZHANG Jun, CHEN Yun-min, HU-Jie. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. DOI: 10.11779/CJGE201611004 |
[9] | NIU Guan-yi, CAO Yuan, WANG Tie-liang. Deduction of in-situ gas permeability test equation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1705-1709. DOI: 10.11779/CJGE201509020 |
[10] | SUN Dongmei, ZHU Yueming, ZHANG Mingjin. Study on numerical model for water-air two-phase flow in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 560-565. |