Citation: | LIANG Jing, CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu. Initiation mechanism of earthquake-induced large landslides considering structural damage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1039-1049. DOI: 10.11779/CJGE202106007 |
[1] |
张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3503-3513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm
ZHANG Yong-shuang, SU Sheng-rui, WU Shu-ren, et al. Research on relationship between fault movement and large-scale landslide in intensive earthquake region[J]. Chinese Journal of Rock Mechanism and Engineering, 2011, 30(S2): 3503-3513. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm
|
[2] |
李晓, 李守定, 陈剑, 等. 地质灾害形成的内外动力耦合作用机制[J]. 岩石力学与工程学报, 2008, 27(9): 1792-1806. doi: 10.3321/j.issn:1000-6915.2008.09.006
LI Xiao, LI Shou-ding, CHEN Jian, et al. Coupling effect mechanism of endogenic and exogenic geological processes of geological hazards evolution[J]. Chinese Journal of Rock Mechanism and Engineering, 2008, 27(9): 1792-1806. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.006
|
[3] |
JABOYEDOFF M, RéJEAN C, LOCAT P. Structural analysis of Turtle Mountain (Alberta) using digital elevation model: Toward a progressive failure[J]. Geomorphology, 2009, 103(1): 5-16. doi: 10.1016/j.geomorph.2008.04.012
|
[4] |
PEDRAZZNI A, JABOYEDOFF M, FROESE C R, et al. Structural analysis of Turtle Mountain: origin and influence of fractures in the development of rock slope failures[J]. Geological Society London Special Publications, 2011, 351(1): 163-183. doi: 10.1144/SP351.9
|
[5] |
DI LUZIO E, SAROLI M, ESPOSITO C, et al. Influence of structural framework on mountain slope deformation in the Maiella anticline(Central Apennines,Italy)[J]. Geo- morphology, 2004, 60(3/4): 417-432.
|
[6] |
FASANI G B, ESPOSITO C, MAFFEI A, et al. Geological controls on initial failure mechanisms of rock avalanches in central Apennines[J]. Landslides: Evaluation and Stabilization, 2004: 501-507.
|
[7] |
SANDØY G, THIERRY O, BJØRN N. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway[J]. Geomorphology, 2017(289): 78-95.
|
[8] |
KORUP , OLIVER . Geomorphic implications of fault zone weakening: slope instability along the alpine fault, south westland to fiordland[J]. New Zealand Journal of Geology and Geophysics, 2004, 47(2): 257-267. doi: 10.1080/00288306.2004.9515052
|
[9] |
崔圣华, 裴向军, 王功辉, 等. 基于环剪试验的汶川地震大型滑坡启动机理探索[J]. 岩土工程学报, 2017, 39(12): 2268-2277. doi: 10.11779/CJGE201712016
CUI Sheng-hua, PEI Xiang-jun, WANG gong-hui. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Journal of Engineering Geology, 2017, 39(12): 2268-2277. (in Chinese) doi: 10.11779/CJGE201712016
|
[10] |
BACHMANN D, BOUISSOU S, CHEMENDA A. Influence of weathering and preexisting large scale fractures on gravitational slope failure: insights from 3-Dphysical modelling[J]. Natural Hazards and Earth System Sciences, 2004(4): 711-717.
|
[11] |
崔圣华. 强震过程软弱层带地震动响应及大型滑坡启动机理研究[D]. 成都: 成都理工大学, 2017.
CUI Sheng-hua. Seismic Responses of Wake Inter-Layer and Initiation Mechanisms of Large Landslide During Strong Earthquake[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese)
|
[12] |
崔圣华, 裴向军, 黄润秋, 等. 汶川地震黄洞子沟右岸大型滑坡地质构造特征及成因[J]. 工程地质学报, 2019, 27(2): 437-450. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902025.htm
CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu, et al. Geological features and causes of the Wenchuan earthquake triggered large landslide on right bank of Huangdongzi gully[J]. Journal of Engineering Geology, 2019, 27(2): 437-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902025.htm
|
[13] |
曹琰波, 戴福初, 许冲, 等. 唐家山滑坡变形运动机制的离散元模拟[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2878-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm
CAO Yi-bo, DAI Fu-chu, XU Chong, et al. Discrete element simulation of deformation and movement mechanism for Tangjiashan landslide[J]. Chinese Journal of Rock Mechanism and Engineering, 2011, 30(S1): 2878-2887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm
|
[14] |
王涛, 马寅生, 龙长兴, 等. 四川汶川地震断裂活动和次生地质灾害浅析[J]. 地质通报, 2008(11): 1913-1922. doi: 10.3969/j.issn.1671-2552.2008.11.022
WANG Tao, MA Yin-sheng, LONG Chang-xing, et al. Fault activity of the Wenchuan earthquake in Sichuan, China and seismic secondary geohazards[J]. Geological Bulletin, 2008(11): 1913-1922. (in Chinese) doi: 10.3969/j.issn.1671-2552.2008.11.022
|
[15] |
李奋生, 李勇, 颜照坤, 等. 构造、地貌和气候对汶川地震同震及震后地质灾害的控制作用—以龙门山北段通口河流域为例[J]. 自然杂志, 2012, 34(4): 216-218, 249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201204006.htm
LI Fu-sheng, LI Yong, YAN Zhao-kun, et al. Controlaction of tectonic, landforms and climate on the geological hazards in wenchuan earthquake coseismic and after earthquake: take tongkou river watershed, the northern longmen mountain for example[J]. Nature Journal, 2012, 34(4): 216-218, 249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201204006.htm
|
[16] |
黄润秋, 李为乐. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028
HUANG Run-qiu, LI Wei-le. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th[J]. Chinese Journal of Rock Mechanism and Engineering, 2008, 27(12): 2585-2592. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.12.028
|
[17] |
黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 2009, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021
HUANG Run-qiu. Mechanism and geomechanical models of landslide hazards triggered by Wenchuan M s8.0 earthquake[J]. Chinese Journal of Rock Mechanism and Engineering, 2009, 28(6): 1239-1249. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.021
|
[18] |
许冲, 戴福初, 徐锡伟. 汶川地震滑坡灾害研究综述[J]. 地质论评, 2010, 56(6): 860-874. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
XU Chong, DAI Fu-chu, XU Xi-wei. Wenchuan Earthquake-induced landslides:an overview[J]. Geological Review, 2010, 56(6): 860-874. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
|
[19] |
唐辉明, 李德威, 胡新丽. 龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J]. 工程地质学报, 2009, 17(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902000.htm
TANG Hui-ming, LI De-wei, HU Xin-li. Faulting characteristics of Wenchuan earthquake and evalution theory of regional crustal stability[J]. Journal of Engineering Geology, 2009, 17(2): 145-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902000.htm
|
[20] |
李勇, 黄润秋, 周荣军, 等. 龙门山地震带的地质背景与汶川地震的地表破裂[J]. 工程地质学报, 2009, 17(1): 3-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200901003.htm
LI Yong, HUANG Run-qiu, ZHOU Rong-jun, et al. Geological background in Longmenshan seismic belt and surface rupture of Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1): 3-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200901003.htm
|
[21] |
GODARD W, PIK R, LAVE J, et al. Late Cenozoic evolution of the central Longmenshan, eastern Tibet: insight from(U-Th)/He thermochronometry[J]. Tectonics, 2009, 28(5): 1-17.
|
[22] |
WANG E Q, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5(9): 640-645.
|
[23] |
四川省地质矿产局化探队. 清平幅H-48-17-A 1:5 万区域地质图说明书[R]. 成都: 四川省地质矿产局化探队, 1995: 63-69.
Geochemical Ex-ploration Brigade of Geology &Mineral Resources Exploration & Development Bureau of Sichuan. Geological map Specificaton of the People's Republic of China (Scale:1:50000) Qingping Seria[R]. Chengdu: Geochemical Exploration Brigade of Geology & Mineral Resources Exploration & Development Bureau of Sichuan, 1995: 63-69. (in Chinese)
|
[24] |
BRIDEAU M, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology, 2009, 103(1): 30-49.
|
[25] |
MARINOS P, HOEK E. GSI: a geologically friendly tool for rock mass strength estimation[C]//GEOENG, Melbourne, 2000, Australia.
|
[26] |
裴向军, 黄润秋, 崔圣华, 等. 大光包滑坡岩体碎裂特征及其工程地质意义[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3106-3115. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1064.htm
PEI Xiang-jun, HUANG Run-qiu, CUI Sheng-hua, et al. The rock mass cataclastic characteristic of Daguangbao landslide and its engineering geological significance[J]. Chinese Journal of Mechanics and Engineering Geology, 2015, 34(S1): 3106-3115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1064.htm
|
[27] |
KIM B, CAI H, KAISER M. et al. Estimation of block sizes for rock masses with non-persistent joints[J]. Rock Mechanics and Rock Engineering, 2007, 40: 169-192.
|
[28] |
MARINOS V, MARINOS P, HOEK E. The geological strength index: applications and limitations[J]. Bulletin of Engineering Geology and the Environ-ment, 2005, 64: 55-65.
|
[29] |
MARTINO S, MINUTOLO A, PACIELLO A. et al. Evidence of amplification effects in fault zone related to rock mass jointing[J]. Natural Hazards, 2006, 39: 419-449.
|
[1] | HUANG Xiaohu, WEI Zhaoheng, YI Wu, GUO Fei, HUANG Haifeng, XIAO Yuhuang. Mechanism of fracture preferential flow infiltration-induced shallow damage of colluvial landslides[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1136-1145. DOI: 10.11779/CJGE20230090 |
[2] | ZHANG Zhao, ZHU Liangyu, LI Guangyao, YUAN Haoyu, GAO Shuaidong, HAN Huaqiang, LIU Fengyin, QI Jilin. Analytical model for preferential infiltration into cracks in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1831-1840. DOI: 10.11779/CJGE20220856 |
[3] | KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463 |
[4] | ZHANG Peng-wei, ZHOU Yang-xin, GAO Wen-zhe, LIU Bao-guo. Multiphase flow computational model for extraction of gas hydrates in marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 80-84. DOI: 10.11779/CJGE2022S1015 |
[5] | ZHAO Kuan-yao, XU Qiang, LIU Fang-zhou, ZHANG Xian-lin. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 941-950. DOI: 10.11779/CJGE202005017 |
[6] | ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. DOI: 10.11779/CJGE202001005 |
[7] | ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316-1321. DOI: 10.11779/CJGE201807019 |
[8] | KE Han, WU Xiao-wen, ZHANG Jun, CHEN Yun-min, HU-Jie. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. DOI: 10.11779/CJGE201611004 |
[9] | NIU Guan-yi, CAO Yuan, WANG Tie-liang. Deduction of in-situ gas permeability test equation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1705-1709. DOI: 10.11779/CJGE201509020 |
[10] | SUN Dongmei, ZHU Yueming, ZHANG Mingjin. Study on numerical model for water-air two-phase flow in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 560-565. |