• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Jing, CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu. Initiation mechanism of earthquake-induced large landslides considering structural damage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1039-1049. DOI: 10.11779/CJGE202106007
Citation: LIANG Jing, CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu. Initiation mechanism of earthquake-induced large landslides considering structural damage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1039-1049. DOI: 10.11779/CJGE202106007

Initiation mechanism of earthquake-induced large landslides considering structural damage

More Information
  • Received Date: June 17, 2020
  • Available Online: December 02, 2022
  • Rock landslides are generally controlled by a series of discontinuities that relate to faults, folds and shear zones, which provide potential failure boundaries. To study the influences of rock mass damage and discontinuous geological interface on the formation and initiation of landslides under the background of fault and anticline, four large landslides triggered by the Wenchuan Ms8.0 earthquake in the carbonate strata of two wings of Dashuizha anticline are selected as examples to carry out detailed engineering geological investigation, structural plane survey, rock testing and rock quality assessment of GSI. The results show that there are clear differences in structural damage caused by fault and anticline. Gradually, the rock mass quality increases from the axis of anticline to the two wings, only decreases significantly locally, and controls the formation position of landslides. Meanwhile, under the background of structural damage, the structural plane and weak zone of specific rock jointly determine the initiation mechanism, and the types are summarized as "control side sliding type", "control bottom sliding type", "control sliding body type" and "control base type". In addition, the comparison of GSI of seismic and non-seismic landslides reveals that strong earthquake may promote the rapid start of landslides by reducing the rock mass quality, and then accelerate the process of geomorphic erosion in the structural damage area. Finally, it is believed that considering the rock mass damage in complex tectonic environment is very important to assess the location and initiation mechanism of potential large-scale landslides caused by strong earthquakes.
  • [1]
    张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3503-3513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm

    ZHANG Yong-shuang, SU Sheng-rui, WU Shu-ren, et al. Research on relationship between fault movement and large-scale landslide in intensive earthquake region[J]. Chinese Journal of Rock Mechanism and Engineering, 2011, 30(S2): 3503-3513. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm
    [2]
    李晓, 李守定, 陈剑, 等. 地质灾害形成的内外动力耦合作用机制[J]. 岩石力学与工程学报, 2008, 27(9): 1792-1806. doi: 10.3321/j.issn:1000-6915.2008.09.006

    LI Xiao, LI Shou-ding, CHEN Jian, et al. Coupling effect mechanism of endogenic and exogenic geological processes of geological hazards evolution[J]. Chinese Journal of Rock Mechanism and Engineering, 2008, 27(9): 1792-1806. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.006
    [3]
    JABOYEDOFF M, RéJEAN C, LOCAT P. Structural analysis of Turtle Mountain (Alberta) using digital elevation model: Toward a progressive failure[J]. Geomorphology, 2009, 103(1): 5-16. doi: 10.1016/j.geomorph.2008.04.012
    [4]
    PEDRAZZNI A, JABOYEDOFF M, FROESE C R, et al. Structural analysis of Turtle Mountain: origin and influence of fractures in the development of rock slope failures[J]. Geological Society London Special Publications, 2011, 351(1): 163-183. doi: 10.1144/SP351.9
    [5]
    DI LUZIO E, SAROLI M, ESPOSITO C, et al. Influence of structural framework on mountain slope deformation in the Maiella anticline(Central Apennines,Italy)[J]. Geo- morphology, 2004, 60(3/4): 417-432.
    [6]
    FASANI G B, ESPOSITO C, MAFFEI A, et al. Geological controls on initial failure mechanisms of rock avalanches in central Apennines[J]. Landslides: Evaluation and Stabilization, 2004: 501-507.
    [7]
    SANDØY G, THIERRY O, BJØRN N. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway[J]. Geomorphology, 2017(289): 78-95.
    [8]
    KORUP , OLIVER . Geomorphic implications of fault zone weakening: slope instability along the alpine fault, south westland to fiordland[J]. New Zealand Journal of Geology and Geophysics, 2004, 47(2): 257-267. doi: 10.1080/00288306.2004.9515052
    [9]
    崔圣华, 裴向军, 王功辉, 等. 基于环剪试验的汶川地震大型滑坡启动机理探索[J]. 岩土工程学报, 2017, 39(12): 2268-2277. doi: 10.11779/CJGE201712016

    CUI Sheng-hua, PEI Xiang-jun, WANG gong-hui. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Journal of Engineering Geology, 2017, 39(12): 2268-2277. (in Chinese) doi: 10.11779/CJGE201712016
    [10]
    BACHMANN D, BOUISSOU S, CHEMENDA A. Influence of weathering and preexisting large scale fractures on gravitational slope failure: insights from 3-Dphysical modelling[J]. Natural Hazards and Earth System Sciences, 2004(4): 711-717.
    [11]
    崔圣华. 强震过程软弱层带地震动响应及大型滑坡启动机理研究[D]. 成都: 成都理工大学, 2017.

    CUI Sheng-hua. Seismic Responses of Wake Inter-Layer and Initiation Mechanisms of Large Landslide During Strong Earthquake[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese)
    [12]
    崔圣华, 裴向军, 黄润秋, 等. 汶川地震黄洞子沟右岸大型滑坡地质构造特征及成因[J]. 工程地质学报, 2019, 27(2): 437-450. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902025.htm

    CUI Sheng-hua, PEI Xiang-jun, HUANG Run-qiu, et al. Geological features and causes of the Wenchuan earthquake triggered large landslide on right bank of Huangdongzi gully[J]. Journal of Engineering Geology, 2019, 27(2): 437-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902025.htm
    [13]
    曹琰波, 戴福初, 许冲, 等. 唐家山滑坡变形运动机制的离散元模拟[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2878-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm

    CAO Yi-bo, DAI Fu-chu, XU Chong, et al. Discrete element simulation of deformation and movement mechanism for Tangjiashan landslide[J]. Chinese Journal of Rock Mechanism and Engineering, 2011, 30(S1): 2878-2887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm
    [14]
    王涛, 马寅生, 龙长兴, 等. 四川汶川地震断裂活动和次生地质灾害浅析[J]. 地质通报, 2008(11): 1913-1922. doi: 10.3969/j.issn.1671-2552.2008.11.022

    WANG Tao, MA Yin-sheng, LONG Chang-xing, et al. Fault activity of the Wenchuan earthquake in Sichuan, China and seismic secondary geohazards[J]. Geological Bulletin, 2008(11): 1913-1922. (in Chinese) doi: 10.3969/j.issn.1671-2552.2008.11.022
    [15]
    李奋生, 李勇, 颜照坤, 等. 构造、地貌和气候对汶川地震同震及震后地质灾害的控制作用—以龙门山北段通口河流域为例[J]. 自然杂志, 2012, 34(4): 216-218, 249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201204006.htm

    LI Fu-sheng, LI Yong, YAN Zhao-kun, et al. Controlaction of tectonic, landforms and climate on the geological hazards in wenchuan earthquake coseismic and after earthquake: take tongkou river watershed, the northern longmen mountain for example[J]. Nature Journal, 2012, 34(4): 216-218, 249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201204006.htm
    [16]
    黄润秋, 李为乐. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    HUANG Run-qiu, LI Wei-le. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th[J]. Chinese Journal of Rock Mechanism and Engineering, 2008, 27(12): 2585-2592. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.12.028
    [17]
    黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 2009, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021

    HUANG Run-qiu. Mechanism and geomechanical models of landslide hazards triggered by Wenchuan M s8.0 earthquake[J]. Chinese Journal of Rock Mechanism and Engineering, 2009, 28(6): 1239-1249. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.06.021
    [18]
    许冲, 戴福初, 徐锡伟. 汶川地震滑坡灾害研究综述[J]. 地质论评, 2010, 56(6): 860-874. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm

    XU Chong, DAI Fu-chu, XU Xi-wei. Wenchuan Earthquake-induced landslides:an overview[J]. Geological Review, 2010, 56(6): 860-874. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
    [19]
    唐辉明, 李德威, 胡新丽. 龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J]. 工程地质学报, 2009, 17(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902000.htm

    TANG Hui-ming, LI De-wei, HU Xin-li. Faulting characteristics of Wenchuan earthquake and evalution theory of regional crustal stability[J]. Journal of Engineering Geology, 2009, 17(2): 145-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200902000.htm
    [20]
    李勇, 黄润秋, 周荣军, 等. 龙门山地震带的地质背景与汶川地震的地表破裂[J]. 工程地质学报, 2009, 17(1): 3-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200901003.htm

    LI Yong, HUANG Run-qiu, ZHOU Rong-jun, et al. Geological background in Longmenshan seismic belt and surface rupture of Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1): 3-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200901003.htm
    [21]
    GODARD W, PIK R, LAVE J, et al. Late Cenozoic evolution of the central Longmenshan, eastern Tibet: insight from(U-Th)/He thermochronometry[J]. Tectonics, 2009, 28(5): 1-17.
    [22]
    WANG E Q, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5(9): 640-645.
    [23]
    四川省地质矿产局化探队. 清平幅H-48-17-A 1:5 万区域地质图说明书[R]. 成都: 四川省地质矿产局化探队, 1995: 63-69.

    Geochemical Ex-ploration Brigade of Geology &Mineral Resources Exploration & Development Bureau of Sichuan. Geological map Specificaton of the People's Republic of China (Scale:1:50000) Qingping Seria[R]. Chengdu: Geochemical Exploration Brigade of Geology & Mineral Resources Exploration & Development Bureau of Sichuan, 1995: 63-69. (in Chinese)
    [24]
    BRIDEAU M, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology, 2009, 103(1): 30-49.
    [25]
    MARINOS P, HOEK E. GSI: a geologically friendly tool for rock mass strength estimation[C]//GEOENG, Melbourne, 2000, Australia.
    [26]
    裴向军, 黄润秋, 崔圣华, 等. 大光包滑坡岩体碎裂特征及其工程地质意义[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3106-3115. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1064.htm

    PEI Xiang-jun, HUANG Run-qiu, CUI Sheng-hua, et al. The rock mass cataclastic characteristic of Daguangbao landslide and its engineering geological significance[J]. Chinese Journal of Mechanics and Engineering Geology, 2015, 34(S1): 3106-3115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1064.htm
    [27]
    KIM B, CAI H, KAISER M. et al. Estimation of block sizes for rock masses with non-persistent joints[J]. Rock Mechanics and Rock Engineering, 2007, 40: 169-192.
    [28]
    MARINOS V, MARINOS P, HOEK E. The geological strength index: applications and limitations[J]. Bulletin of Engineering Geology and the Environ-ment, 2005, 64: 55-65.
    [29]
    MARTINO S, MINUTOLO A, PACIELLO A. et al. Evidence of amplification effects in fault zone related to rock mass jointing[J]. Natural Hazards, 2006, 39: 419-449.
  • Related Articles

    [1]HUANG Xiaohu, WEI Zhaoheng, YI Wu, GUO Fei, HUANG Haifeng, XIAO Yuhuang. Mechanism of fracture preferential flow infiltration-induced shallow damage of colluvial landslides[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1136-1145. DOI: 10.11779/CJGE20230090
    [2]ZHANG Zhao, ZHU Liangyu, LI Guangyao, YUAN Haoyu, GAO Shuaidong, HAN Huaqiang, LIU Fengyin, QI Jilin. Analytical model for preferential infiltration into cracks in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1831-1840. DOI: 10.11779/CJGE20220856
    [3]KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463
    [4]ZHANG Peng-wei, ZHOU Yang-xin, GAO Wen-zhe, LIU Bao-guo. Multiphase flow computational model for extraction of gas hydrates in marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 80-84. DOI: 10.11779/CJGE2022S1015
    [5]ZHAO Kuan-yao, XU Qiang, LIU Fang-zhou, ZHANG Xian-lin. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 941-950. DOI: 10.11779/CJGE202005017
    [6]ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. DOI: 10.11779/CJGE202001005
    [7]ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316-1321. DOI: 10.11779/CJGE201807019
    [8]KE Han, WU Xiao-wen, ZHANG Jun, CHEN Yun-min, HU-Jie. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. DOI: 10.11779/CJGE201611004
    [9]NIU Guan-yi, CAO Yuan, WANG Tie-liang. Deduction of in-situ gas permeability test equation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1705-1709. DOI: 10.11779/CJGE201509020
    [10]SUN Dongmei, ZHU Yueming, ZHANG Mingjin. Study on numerical model for water-air two-phase flow in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 560-565.

Catalog

    Article views (272) PDF downloads (221) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return