• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Xun-jian, BIAN Kang, LIU Jian, XIE Zheng-yong, CHEN Ming, LI Bing-yang, CEN Yue, LIU Zhen-ping. Discrete element simulation of shale softening based on parallel-bonded water-weakening model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 725-733. DOI: 10.11779/CJGE202104015
Citation: HU Xun-jian, BIAN Kang, LIU Jian, XIE Zheng-yong, CHEN Ming, LI Bing-yang, CEN Yue, LIU Zhen-ping. Discrete element simulation of shale softening based on parallel-bonded water-weakening model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 725-733. DOI: 10.11779/CJGE202104015

Discrete element simulation of shale softening based on parallel-bonded water-weakening model

More Information
  • Received Date: June 21, 2020
  • Available Online: December 04, 2022
  • Based on the discrete element method of particles, by constructing damage factors, a parallel-bonded water-weakening model is proposed, and a particle flow code model considering the heterogeneity of the mechanical parameters of the cement is established. The comparison and analysis of the results of indoor experiments and numerical simulations verify the correctness and applicability of the proposed model. The main conclusions are as follows: (1) The heterogeneity of rock cement has certain influences on the macroscopic mechanical properties of rock. As the homogeneity factor increases, the homogeneity of the rock increases, and the uniaxial compressive strength and elastic modulus also increase, which conforms to the exponential function relationship. (2) With the increase of the bond area coefficient, the total amount and growth rate of the stored total strain energy in the rock gradually decrease. (3) In the dry state of the rock, the inclination angle of micro-cracks is concentrated in 80°~100°. As the bond area coefficient increases, the distribution range of the inclination angle of micro-cracks gradually increases. (4) With the increase of the bond area coefficient, the rock fracture surface is denser and the penetration is enhanced. The research results can provide a certain basis and theoretical guidance for the meso-mechanism study on the large deformation of the surrounding rock caused by the water in deep-buried tunnels and the deformation of the wading slope of the reservoir bank.
  • [1]
    刘新荣, 傅晏, 王永新, 等. 水-岩相互作用对库岸边坡稳定的影响研究[J]. 岩土力学, 2009, 30(3): 613-616. doi: 10.3969/j.issn.1000-7598.2009.03.006

    LIU Xin-rong, FU Yan, WANG Yong-xin, et al. Stability of reservoir bank slope under water-rock interaction[J]. Rock and Soil Mechanics, 2009, 30(3): 613-616. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.03.006
    [2]
    刘新荣, 李栋梁, 张梁, 等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报, 2016, 38(7): 1291-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607017.htm

    LIU Xin-rong, LI Dong-liang, ZHANG Liang, et al. The research on the wet-dry cycle's influence on the mechanical properties and microstructure change law of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607017.htm
    [3]
    杨春和, 冒海军, 王学潮, 等. 板岩遇水软化的微观结构及力学特性研究[J]. 岩土力学, 2006, 27(12): 2090-2098. doi: 10.3969/j.issn.1000-7598.2006.12.002

    YANG Chun-he, MAO Hai-jun, WANG Xue-chao, et al. Study on variation of microstructure and mechanical properties of water-weakening slates[J]. Rock and Soil Mechanics, 2006, 27(12): 2090-2098. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.12.002
    [4]
    HE Man-chao. Latest progress of soft rock mechanics and engineering in China[J]. Journal of Rock Mechanics & Geotechnical Engineering, 2014, 6(3): 165-179.
    [5]
    闫章程, 孙辉, 李利平, 等. 干燥与饱水灰岩单轴压缩过程中声发射特征的影响研究[J]. 长江科学院院报, 待刊. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202004019.htm

    YAN Zhang-cheng, SUN Hui, LI Li-ping, et al. Research on the effect of acoustic emission characteristics in dry and saturated limestone under uniaxial compression[J]. Journal of Yangtze River Scientific Research Institute, in press. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202004019.htm
    [6]
    朱宝龙, 李晓宁, 巫锡勇, 等. 黑色页岩遇水膨胀微观特征试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3896-3905. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2033.htm

    ZHU Bao-long, LI Xiao-ning, WU Xi-yong, et al. Experimental study of micro-characteristics of swelling for black shale under influence of water[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3896-3905. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2033.htm
    [7]
    LIN M L, JENG F S, TSAI L S, et al. Wetting weakening of tertiary sandstones-microscopic mechanism[J]. Environ Geol, 2005, 48: 265-275. doi: 10.1007/s00254-005-1318-y
    [8]
    POTYONDY D O, CUNDALL P A. A bond-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    [9]
    柳万里, 晏鄂川, 戴航, 等. 巴东组泥岩水作用的特征强度及其能量演化规律研究[J]. 岩石力学与工程学报, 2020, 39(2): 311-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002011.htm

    LIU Wan-li, YAN E-chuan, DAI Hang, et al. Study on characteristic strength and energy evolution law of Badong formation mudstone under water effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 311-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002011.htm
    [10]
    邓华锋, 支永艳, 段玲玲, 等. 水−岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm

    DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm
    [11]
    卞康, 陈彦安, 刘建, 等. 不同吸水时间下页岩卸荷破坏特征的颗粒流离散元研究[J]. 岩土力学, 2020, 41(增刊1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1041.htm

    BIAN Kang, CHEN Yan-an, LIU Jian, et al. The unloading failure characteristics of shale under different water absorption time using the PFC numerical method[J]. Rock and Soil Mechanics, 2020, 41(S1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1041.htm
    [12]
    ZHAO Z, SONG E X. Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions[J]. Computers and Geotechnics, 2015, 68: 137-146.
    [13]
    POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 677-691.
    [14]
    KANG B, JIAN L, WEI Z, et al. Mechanical behavior and damage constitutive model of rock subjected to water-weakening effect and uniaxial loading[J]. Rock Mechanics and Rock Engineering, 2018, 52: 97-106.
    [15]
    Itasca Consulting Group Inc. PFC, Version 5.0[M]. Minneapolis: Itasca Consulting Group Inc, 2014: 1-2.
    [16]
    GRADY D L, KIPP M L. Continuum modeling of explosive fracture in oil shale[J]. Int J Rock Mech Min Sci, 1980, 17: 147-157.
    [17]
    TANG C A, LIU H, LEE P, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 555-569.
    [18]
    李欢. 深埋岩体非均质时效破裂机制及细观演化机理[D]. 武汉: 长江科学院, 2017.

    LI Huan. Aging Rupture Mechanism and Mesoscopic Evolution Mechanism of Deep Heterogeneous Rock Mass[D]. Wuhan: Changjiang River Scientific Research Institute, 2017. (in Chinese)
    [19]
    BLAIR S C, COOK N G W. Analysis of compressive fracture in rock using statistical techniques: Part II. Effect of microscale heterogeneity on macroscopic deformation[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 849-861.
    [20]
    蒋明镜, 张鹏, 廖兆文. 考虑水软化-化学风化作用的岩石单轴压缩试验离散元模拟[J]. 中国水利水电科学研究院学报, 2017, 15(2): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201702002.htm

    JIANG Ming-jing, ZHANG Peng, LIAO Zhao-wen. DEM numerical simulation of rock under the influence of water softening and chemical weathering and chemical weathering in uniaxial compression test[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(2): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201702002.htm
    [21]
    LIU H Y, ROQUETE A, KOU S Q, et al. Characterization of rock heterogeneity and numerical verification[J]. Eng Geol, 2004, 72: 89-119.
    [22]
    CHEN Z H, THAM L G, YEUNG M R, et al. Confinement effects for damage and failure of brittle rocks[J]. Int J Rock Mech Min Sci, 2006, 43: 1262-1269.
    [23]
    郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 296-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm

    GUO Jia-qi, LIU Xi-liang, QIAO Chun-sheng. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296-308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm
    [24]
    李天斌, 陈子全, 陈国庆, 等. 不同含水率作用下砂岩的能量机制研究[J]. 岩土力学, 2015, 36(增刊2): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2031.htm

    LI Tian-bin, CHEN Zi-quan, CHEN Guo-qing, et al. An experimental study of energy mechanism of sandstone with different moisture contents[J]. Rock and Soil Mechanics, 2015, 36(S2): 229-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2031.htm
    [25]
    LI L, LEE PKK, TSUI Y, et al. Failure process of granite[J]. Int J Geomech, 2003(3): 84-98.
    [26]
    郑晓卿, 刘建, 卞康, 等. 鄂西北页岩饱水软化微观机制与力学特性研究[J]. 岩土力学, 2017, 38(7): 2022-2028. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707023.htm

    ZHENG Xiao-qing, LIU Jian, BIAN Kang, et al. Softening micro-mechanism and mechanical properties of water-saturated shale in Northwestern Hubei[J]. Rock and Soil Mechanics, 2017, 38(7): 2022-2028. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707023.htm
  • Related Articles

    [1]JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018
    [2]ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014
    [6]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [8]Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [9]NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102.
    [10]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return