Citation: | FU Xian-lei, DU Yan-jun, YOU Xing-yuan, YANG Yu-ling, JIANG Zhe-yuan. Influences of red mud leachates on hydraulic performance of a modified geosynthetic clay liner[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 706-714. DOI: 10.11779/CJGE202104013 |
[1] |
HAMADA T. Environmental management of bauxite residue—a review[J]. The Jamaica Bauxite Institute, The University of the West Indies, Kingston, 1986: 109-117.
|
[2] |
宋志伟. 改性赤泥协同水泥固化铜污染土的性能及机理研究[D]. 太原: 太原理工大学, 2017.
SONG Zhi-wei. Study on the Characteristic and Mechanism of Cu Contaminated Soil Stabilized by Modified Red Mud with Cement[D]. Taiyuan: Taiyuan University of Technology, 2017 (in Chinese)
|
[3] |
XUE S, ZHU F, KONG X, et al. A review of the characterization and revegetation of bauxite residues (red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. doi: 10.1007/s11356-015-4558-8
|
[4] |
李健, 巫锡勇, 侯龙. 拜耳法赤泥的物化特性及污染防控措施研究[J]. 地球与环境, 2014, 42(5): 677-682. doi: 10.14050/j.cnki.1672-9250.2014.05.034
LI Jian, WU Xi-yong, HOU Long. Research on the physicochemical features of Bayer red mud and the corresponding method of pollution prevention[J]. Earth and Environment, 2014, 42(5): 677-682 (in Chinese). doi: 10.14050/j.cnki.1672-9250.2014.05.034
|
[5] |
CASTALDI P, SILVETTI M, SANTONA L, et al. XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals[J]. Clays and Clay Minerals, 2008, 56(4): 461-469. doi: 10.1346/CCMN.2008.0560407
|
[6] |
干法赤泥堆场设计规范:GB 50986—2014[S]. 2015.
Code for Design of Dry Red Mud Stack: GB 50986—2014[S]. 2015. (in Chinese)
|
[7] |
ROWE R K. Protecting the environment with geosynthetics: 53rd Karl Terzaghi Lecture[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020081. doi: 10.1061/(ASCE)GT.1943-5606.0002239
|
[8] |
BUDIHARDJO M, CHEGENIZADEH A, NIKRAZ H. A review of key factors on Geosynthetic clay liners’ performance as liner system[J]. International Journal of Biological, Ecological and Environmental Sciences, 2012, 1(3): 117-119.
|
[9] |
谢海建, 詹良通, 陈云敏, 等. 中国四类衬垫系统防污性能的比较分析[J]. 土木工程学报, 2011, 44(7): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107020.htm
XIE Hai-jian, ZHAN Liang-tong, CHEN Yun-min, et al. Comparison of the performance of four types of liner systems in China. China Civil Engineering Journal, 2011, 44(7): 133-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107020.htm
|
[10] |
BOUAZZA A. Geosynthetic clay liners[J]. Geotextiles and Geomembranes, 2002, 20(1): 3-17. doi: 10.1016/S0266-1144(01)00025-5
|
[11] |
MCWATTERS R S, ROWE R K, WILKINS D, et al. Geosynthetics in Antarctica: performance of a composite barrier system to contain hydrocarbon-contaminated soil after three years in the field[J]. Geotextiles and Geomembranes, 2016, 44(5): 673-685. doi: 10.1016/j.geotexmem.2016.06.001
|
[12] |
KALINOVICH I K, RUTTER A, ROWE R K, et al. Design and application of surface PRBs for PCB remediation in the Canadian Arctic[J]. Journal of Environmental Management, 2012, 101: 124-133.
|
[13] |
KALINOVICH I K, RUTTER A, POLAND J S, et al. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology[J]. Science of the Total Environment, 2008, 407(1): 53-66. doi: 10.1016/j.scitotenv.2008.08.006
|
[14] |
RUHL J L, DANIEL D E. Geosynthetic clay liners permeated with chemical solutions and leachates[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1997, 123(4): 369-381.
|
[15] |
CHEN J, BENSON C H. Hydraulic conductivity and attenuation of bentonite-polymer composite geosynthetic clay liners permeated with bauxite liquor from China[C]//AGU Fall Meeting 2019, 2019, AGU.
|
[16] |
TIAN K, BENSON C H. Containing bauxite liquor using bentonite-polymer composite geosynthetic clay liners[C]//The International Congress on Environmental Geotechnics. Springer, 2018, Singapore: 672-678.
|
[17] |
LIU Y, GATES W P, BOUAZZA A, et al. Fluid loss as a quick method to evaluate hydraulic conductivity of geosynthetic clay liners under acidic conditions[J]. Canadian Geotechnical Journal, 2014, 51(2): 158-163. doi: 10.1139/cgj-2013-0241
|
[18] |
FILZ G M, HENRY L B, HESLIN G M, et al. Determining hydraulic conductivity of soil-bentonite using the API filter press[J]. Geotechnical Testing Journal, 2001, 24(1): 61-71. doi: 10.1520/GTJ11282J
|
[19] |
RICO R A, GILLES B, IRINI D M. Hydraulic conductivity determination of compacted sand-bentonite mixture using filter press[J]. Geotechnical Testing Journal, 2011, 34(1): 9-17.
|
[20] |
DU Y J, SHEN S Q, TIAN K, YANG Y L. Effect of polymer amendment on hydraulic conductivity of bentonite in calcium chloride solutions[J]. Journal of Materials in Civil Engineering, 2021, 33(2): 04020452. doi: 10.1061/(ASCE)MT.1943-5533.0003518
|
[21] |
范日东, 刘松玉, 杜延军. 基于改进滤失试验的重金属污染膨润土渗透特性试验研究[J]. 岩土力学, 2019, 40(8): 2989-2996. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908014.htm
FAN Ri-dong, LIU Song-yu, DU Yan-jun. Modified fluid loss test to measure hydraulic conductivity of heavy metal-contaminated bentonite[J]. Rock and Soil Mechanics, 2019, 40(8): 2989-2996. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908014.htm
|
[22] |
FAN R D, REDDY K R, YANG Y L, et al. Index properties, hydraulic conductivity and contaminant-compatibility of CMC-treated sodium activated calcium bentonite[J]. International Journal of Environmental Research and Public Health, 2020, 17(6): 1863-1881. doi: 10.3390/ijerph17061863
|
[23] |
公路土工试验规程:JTG 3430—2020[S]. 2021.
Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. 2021 (in Chinese)
|
[24] |
Standard Test Methods for pH of Soils: ASTM D4972[S]. 2019.
|
[25] |
CERATO A B, LUTENEGGERL A J. Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method[J]. Geotechnical Testing Journal, 2002, 25(3): 315-321.
|
[26] |
KATSUMI T, ISHIMORI H, ONIKATA M, et al. Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions[J]. Geotextiles and Geomembranes, 2008, 26(1): 14-30. doi: 10.1016/j.geotexmem.2007.04.003
|
[27] |
KOLSTAD D C, BENSON C H, EDIL T B. Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(12): 1236-1249. doi: 10.1061/(ASCE)1090-0241(2004)130:12(1236)
|
[28] |
SHACKELFORD C D, BENSON C H, KATSUMI T, et al. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids[J]. Geotextiles and Geomembranes, 2000, 18(2): 133-161.
|
[29] |
地下水质量标准:GB/T 14848—2017[S]. 2018.
Standard for Groundwater Quality: GB/T 14848—2017[S]. 2018. (in Chinese)
|
[30] |
污染地块地下水修复和风险管控技术导则:HJ 25.6—2019[S]. 2019.
Technical Guideline for Groundwater Remediation and Risk Control of Contaminated Sites: HJ 25.6-2019[S]. 2019. (in Chinese)
|
[31] |
Standard Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners: ASTM D5890[S]. 2011.
|
[32] |
Standard Test Method for Electrical Conductivity and Resistivity of Water: ASTM D1125[S]. 2014.
|
[33] |
Method for pH of Aqueous Solutions with the Glass Electrode: ASTM E70[S]. 2015.
|
[34] |
CHUNG J, DANIEL D E. Modified fluid loss test as an improved measure of hydraulic conductivity for bentonite[J]. Geotechnical Testing Journal, 2008, 31(3): 243-251.
|
[35] |
生活垃圾卫生填埋场防渗系统工程技术规范:CJJ 113—2007[S]. 2007.
Technical Code for Liner System of Municipal Solid Waste Landfill CJJ 113—2007[S]. 2007. (in Chinese)
|
[36] |
Standard Test Method for Evaluation of Hydraulic Properties of Geosynthetic Clay Liners Permeated with Potentially Incompatible Aqueous Solution: ASTM D6766[S]. 2020.
|
[37] |
Standard Test Method for Hydraulic Conductivity Compatibility Testing of Soils with Aqueous Solutions: ASTM D7100[S]. 2011.
|
[38] |
MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons, 2005.
|
[39] |
秦爱芳, 傅贤雷, 孙德安, 等. 化-力耦合条件下膨润土的体变特性[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3775-3782. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2053.htm
QIN Ai-fang, FU Xian-lei, SUN De-an, et al. Influences of chemo-mechanical coupling on the volume change behaviour of bentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3775-3782. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2053.htm
|
[40] |
范日东, 杜延军, 陈左波, 等. 受铅污染的土-膨润土竖向隔离墙材料的压缩及渗透特性试验研究[J]. 岩土工程学报, 2013, 35(5): 841-848. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305006.htm
FAN Ri-dong, DU Yan-jun, CHEN Zou-bo, et al. Compressibility and permeability characteristics of lead contaminated soil-bentonite vertical cutoff wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 841-848. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305006.htm
|
[41] |
YE W M, ZHANG F, CHEN B, et al. Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite[J]. Environmental Earth Sciences, 2014, 72(7): 2621-2630.
|
[1] | JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018 |
[2] | ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014 |
[6] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[8] | Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6). |
[9] | NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102. |
[10] | Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100. |
1. |
陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
![]() | |
2. |
冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
![]() | |
3. |
李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 .
![]() | |
4. |
林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
![]() | |
5. |
刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
![]() | |
6. |
王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
![]() | |
7. |
倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
![]() | |
8. |
康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .
![]() |