• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FU Xian-lei, DU Yan-jun, YOU Xing-yuan, YANG Yu-ling, JIANG Zhe-yuan. Influences of red mud leachates on hydraulic performance of a modified geosynthetic clay liner[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 706-714. DOI: 10.11779/CJGE202104013
Citation: FU Xian-lei, DU Yan-jun, YOU Xing-yuan, YANG Yu-ling, JIANG Zhe-yuan. Influences of red mud leachates on hydraulic performance of a modified geosynthetic clay liner[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 706-714. DOI: 10.11779/CJGE202104013

Influences of red mud leachates on hydraulic performance of a modified geosynthetic clay liner

More Information
  • Received Date: June 27, 2020
  • Available Online: December 04, 2022
  • The effectiveness of a commercial modified geosynthetic clay liner (GCL) for the containment of the red mud leachates is investigated. The hydraulic conductivity (k) of GCL permeated with red mud leachate is an important index reflecting its containment performance. A series of free swell tests are conducted to evaluate the free swell index (FSI) of bentonite of the GCL in four types of red mud leachates. A series of modified fluid loss tests are conducted to evaluate k of the GCL using four types of red mud leachates as permeating liquids. The clean tap water is tested as a benchmark for comparison purpose. The influence of prehydration methods on k of the GCL sample are assessed. The results indicate that the FSI decreases with the increasing ionic strength (I). The k of non-prehydrated GCL is about 5 times that of the prehydrated GCL. The prehydration of GCL with tap water is suggested to achieve superior hydraulic performance exposed to the red mud leachate. The results show that k decreases slightly with the increasing air pressure and FSI, while it increases with the increasing I and relative abundance of monovalent and divalent cations (RMD). In the tested red much leachates, the hydraulic conductivity ratio (k in red mud leachate to that in tap water) of the GCL is found to vary within 4.35 to 12.0.
  • [1]
    HAMADA T. Environmental management of bauxite residue—a review[J]. The Jamaica Bauxite Institute, The University of the West Indies, Kingston, 1986: 109-117.
    [2]
    宋志伟. 改性赤泥协同水泥固化铜污染土的性能及机理研究[D]. 太原: 太原理工大学, 2017.

    SONG Zhi-wei. Study on the Characteristic and Mechanism of Cu Contaminated Soil Stabilized by Modified Red Mud with Cement[D]. Taiyuan: Taiyuan University of Technology, 2017 (in Chinese)
    [3]
    XUE S, ZHU F, KONG X, et al. A review of the characterization and revegetation of bauxite residues (red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. doi: 10.1007/s11356-015-4558-8
    [4]
    李健, 巫锡勇, 侯龙. 拜耳法赤泥的物化特性及污染防控措施研究[J]. 地球与环境, 2014, 42(5): 677-682. doi: 10.14050/j.cnki.1672-9250.2014.05.034

    LI Jian, WU Xi-yong, HOU Long. Research on the physicochemical features of Bayer red mud and the corresponding method of pollution prevention[J]. Earth and Environment, 2014, 42(5): 677-682 (in Chinese). doi: 10.14050/j.cnki.1672-9250.2014.05.034
    [5]
    CASTALDI P, SILVETTI M, SANTONA L, et al. XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals[J]. Clays and Clay Minerals, 2008, 56(4): 461-469. doi: 10.1346/CCMN.2008.0560407
    [6]
    干法赤泥堆场设计规范:GB 50986—2014[S]. 2015.

    Code for Design of Dry Red Mud Stack: GB 50986—2014[S]. 2015. (in Chinese)
    [7]
    ROWE R K. Protecting the environment with geosynthetics: 53rd Karl Terzaghi Lecture[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020081. doi: 10.1061/(ASCE)GT.1943-5606.0002239
    [8]
    BUDIHARDJO M, CHEGENIZADEH A, NIKRAZ H. A review of key factors on Geosynthetic clay liners’ performance as liner system[J]. International Journal of Biological, Ecological and Environmental Sciences, 2012, 1(3): 117-119.
    [9]
    谢海建, 詹良通, 陈云敏, 等. 中国四类衬垫系统防污性能的比较分析[J]. 土木工程学报, 2011, 44(7): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107020.htm

    XIE Hai-jian, ZHAN Liang-tong, CHEN Yun-min, et al. Comparison of the performance of four types of liner systems in China. China Civil Engineering Journal, 2011, 44(7): 133-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107020.htm
    [10]
    BOUAZZA A. Geosynthetic clay liners[J]. Geotextiles and Geomembranes, 2002, 20(1): 3-17. doi: 10.1016/S0266-1144(01)00025-5
    [11]
    MCWATTERS R S, ROWE R K, WILKINS D, et al. Geosynthetics in Antarctica: performance of a composite barrier system to contain hydrocarbon-contaminated soil after three years in the field[J]. Geotextiles and Geomembranes, 2016, 44(5): 673-685. doi: 10.1016/j.geotexmem.2016.06.001
    [12]
    KALINOVICH I K, RUTTER A, ROWE R K, et al. Design and application of surface PRBs for PCB remediation in the Canadian Arctic[J]. Journal of Environmental Management, 2012, 101: 124-133.
    [13]
    KALINOVICH I K, RUTTER A, POLAND J S, et al. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology[J]. Science of the Total Environment, 2008, 407(1): 53-66. doi: 10.1016/j.scitotenv.2008.08.006
    [14]
    RUHL J L, DANIEL D E. Geosynthetic clay liners permeated with chemical solutions and leachates[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1997, 123(4): 369-381.
    [15]
    CHEN J, BENSON C H. Hydraulic conductivity and attenuation of bentonite-polymer composite geosynthetic clay liners permeated with bauxite liquor from China[C]//AGU Fall Meeting 2019, 2019, AGU.
    [16]
    TIAN K, BENSON C H. Containing bauxite liquor using bentonite-polymer composite geosynthetic clay liners[C]//The International Congress on Environmental Geotechnics. Springer, 2018, Singapore: 672-678.
    [17]
    LIU Y, GATES W P, BOUAZZA A, et al. Fluid loss as a quick method to evaluate hydraulic conductivity of geosynthetic clay liners under acidic conditions[J]. Canadian Geotechnical Journal, 2014, 51(2): 158-163. doi: 10.1139/cgj-2013-0241
    [18]
    FILZ G M, HENRY L B, HESLIN G M, et al. Determining hydraulic conductivity of soil-bentonite using the API filter press[J]. Geotechnical Testing Journal, 2001, 24(1): 61-71. doi: 10.1520/GTJ11282J
    [19]
    RICO R A, GILLES B, IRINI D M. Hydraulic conductivity determination of compacted sand-bentonite mixture using filter press[J]. Geotechnical Testing Journal, 2011, 34(1): 9-17.
    [20]
    DU Y J, SHEN S Q, TIAN K, YANG Y L. Effect of polymer amendment on hydraulic conductivity of bentonite in calcium chloride solutions[J]. Journal of Materials in Civil Engineering, 2021, 33(2): 04020452. doi: 10.1061/(ASCE)MT.1943-5533.0003518
    [21]
    范日东, 刘松玉, 杜延军. 基于改进滤失试验的重金属污染膨润土渗透特性试验研究[J]. 岩土力学, 2019, 40(8): 2989-2996. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908014.htm

    FAN Ri-dong, LIU Song-yu, DU Yan-jun. Modified fluid loss test to measure hydraulic conductivity of heavy metal-contaminated bentonite[J]. Rock and Soil Mechanics, 2019, 40(8): 2989-2996. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908014.htm
    [22]
    FAN R D, REDDY K R, YANG Y L, et al. Index properties, hydraulic conductivity and contaminant-compatibility of CMC-treated sodium activated calcium bentonite[J]. International Journal of Environmental Research and Public Health, 2020, 17(6): 1863-1881. doi: 10.3390/ijerph17061863
    [23]
    公路土工试验规程:JTG 3430—2020[S]. 2021.

    Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. 2021 (in Chinese)
    [24]
    Standard Test Methods for pH of Soils: ASTM D4972[S]. 2019.
    [25]
    CERATO A B, LUTENEGGERL A J. Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method[J]. Geotechnical Testing Journal, 2002, 25(3): 315-321.
    [26]
    KATSUMI T, ISHIMORI H, ONIKATA M, et al. Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions[J]. Geotextiles and Geomembranes, 2008, 26(1): 14-30. doi: 10.1016/j.geotexmem.2007.04.003
    [27]
    KOLSTAD D C, BENSON C H, EDIL T B. Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(12): 1236-1249. doi: 10.1061/(ASCE)1090-0241(2004)130:12(1236)
    [28]
    SHACKELFORD C D, BENSON C H, KATSUMI T, et al. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids[J]. Geotextiles and Geomembranes, 2000, 18(2): 133-161.
    [29]
    地下水质量标准:GB/T 14848—2017[S]. 2018.

    Standard for Groundwater Quality: GB/T 14848—2017[S]. 2018. (in Chinese)
    [30]
    污染地块地下水修复和风险管控技术导则:HJ 25.6—2019[S]. 2019.

    Technical Guideline for Groundwater Remediation and Risk Control of Contaminated Sites: HJ 25.6-2019[S]. 2019. (in Chinese)
    [31]
    Standard Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners: ASTM D5890[S]. 2011.
    [32]
    Standard Test Method for Electrical Conductivity and Resistivity of Water: ASTM D1125[S]. 2014.
    [33]
    Method for pH of Aqueous Solutions with the Glass Electrode: ASTM E70[S]. 2015.
    [34]
    CHUNG J, DANIEL D E. Modified fluid loss test as an improved measure of hydraulic conductivity for bentonite[J]. Geotechnical Testing Journal, 2008, 31(3): 243-251.
    [35]
    生活垃圾卫生填埋场防渗系统工程技术规范:CJJ 113—2007[S]. 2007.

    Technical Code for Liner System of Municipal Solid Waste Landfill CJJ 113—2007[S]. 2007. (in Chinese)
    [36]
    Standard Test Method for Evaluation of Hydraulic Properties of Geosynthetic Clay Liners Permeated with Potentially Incompatible Aqueous Solution: ASTM D6766[S]. 2020.
    [37]
    Standard Test Method for Hydraulic Conductivity Compatibility Testing of Soils with Aqueous Solutions: ASTM D7100[S]. 2011.
    [38]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons, 2005.
    [39]
    秦爱芳, 傅贤雷, 孙德安, 等. 化-力耦合条件下膨润土的体变特性[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3775-3782. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2053.htm

    QIN Ai-fang, FU Xian-lei, SUN De-an, et al. Influences of chemo-mechanical coupling on the volume change behaviour of bentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3775-3782. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2053.htm
    [40]
    范日东, 杜延军, 陈左波, 等. 受铅污染的土-膨润土竖向隔离墙材料的压缩及渗透特性试验研究[J]. 岩土工程学报, 2013, 35(5): 841-848. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305006.htm

    FAN Ri-dong, DU Yan-jun, CHEN Zou-bo, et al. Compressibility and permeability characteristics of lead contaminated soil-bentonite vertical cutoff wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 841-848. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305006.htm
    [41]
    YE W M, ZHANG F, CHEN B, et al. Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite[J]. Environmental Earth Sciences, 2014, 72(7): 2621-2630.
  • Related Articles

    [1]JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018
    [2]ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014
    [6]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [8]Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [9]NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102.
    [10]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views (283) PDF downloads (150) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return