• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHONG Zi-lan, ZHEN Li-bin, CHEN Qun, ZHAO Mi, DU Xiu-li. Optimal duration of endurance time acceleration functions for shallow buried underground structures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 698-705. DOI: 10.11779/CJGE202104012
Citation: ZHONG Zi-lan, ZHEN Li-bin, CHEN Qun, ZHAO Mi, DU Xiu-li. Optimal duration of endurance time acceleration functions for shallow buried underground structures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 698-705. DOI: 10.11779/CJGE202104012

Optimal duration of endurance time acceleration functions for shallow buried underground structures

More Information
  • Received Date: August 30, 2020
  • Available Online: December 04, 2022
  • The effects of duration of the endurance time analysis on the seismic response of the underground structures are investigated. The typical two-story three-span subway station embedded in the sites of classes II and III is used as the prototype. The response spectra at the engineering bedrock is used as the target ones to develop six endurance time acceleration functions as the input motions for the nonlinear soil-structure interaction system. Using the results from the incremental dynamic analysis as the reference, the effects of time duration of the endurance time analysis on the seismic analysis of underground structures are significant. A formula to compute the optimal time duration based on the variations of earthquake ground motion energy measure, Arias intensity, with the target time is proposed and validated. It can be seen from the numerical results that endurance time acceleration functions with durations of 30 and 45 s are more favorable for the underground structures embedded in the sites of classes II and III, respectively. Moreover, the proposed formula for the optimal duration estimation is feasible for the seismic performance evaluation of underground structures in the above two site classes. The results from the endurance time analysis are more accurate when the total energy in the artificial endurance time acceleration function is close to the actual earthquake records.
  • [1]
    杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    DU Xiu-li, MA Chao, LU De-chun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm
    [2]
    李田彬. 汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J]. 工程地质学报, 2008, 16(6): 742-750. doi: 10.3969/j.issn.1004-9665.2008.06.003

    LI Tian-bin. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 742-750. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.06.003
    [3]
    SEAOC. Performance Based Seismic Engineering of buildings[R]. Version 2000 Committee. Sacramento: Structural Engineers Association of California, 1995.
    [4]
    刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008, 41(4): 73-80. doi: 10.3321/j.issn:1000-131X.2008.04.011

    LIU Jing-bo, LIU Xiang-qing, LI Bin. A pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008, 41(4): 73-80. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.04.011
    [5]
    刘晶波, 刘祥庆, 薛颖亮. 地下结构抗震分析与设计的Pushover方法适用性研究[J]. 工程力学, 2009, 26(1): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm

    LIU Jing-bo, LIU Xiang-qing, XUE Ying-liang. Study on applicability of a pushover analysis method for seismic analysis and design of underground structures[J]. Engineering Mechanics, 2009, 26(1): 49-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm
    [6]
    刘晶波, 王文晖, 赵冬冬, 等. 循环往复加载的地下结构Pushover分析方法及其在地震损伤分析中的应用[J]. 地震工程学报, 2013, 35(1): 21-28. doi: 10.3969/j.issn.1000-0844.2013.01.0021

    LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Pushover analysis method of underground structures under reversal load and its application in seismic damage analysis[J]. China Earthquake Engineering Journal, 2013, 35(1): 21-28. (in Chinese) doi: 10.3969/j.issn.1000-0844.2013.01.0021
    [7]
    VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514. doi: 10.1002/eqe.141
    [8]
    HARIRI-ARDEBILI M, SAOUMA V. Probabilistic seismic demand model and optimal intensity measure for concrete dams[J]. Structure Safety, 2016, 59: 67-85. doi: 10.1016/j.strusafe.2015.12.001
    [9]
    JALAVER F, CORNELL C. Alternative non-linear demand estimation methods for probability-based seismic assessments[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(8): 951-972. doi: 10.1002/eqe.876
    [10]
    钟紫蓝, 甄立斌, 申轶尧, 等. 基于耐震时程分析法的地下结构抗震性能评价[J]. 岩土工程学报, 2020, 42(8): 1482-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008019.htm

    ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, et al. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008019.htm
    [11]
    ESTEKANCHI H E, VAFAI A, SADEGHAZAR M. Endurance time method for seismic analysis and design of structures[J]. Scientia Iranica, 2004, 11(4): 361-370.
    [12]
    ESTEKANCHI H E, VALAMANESH V, VAFAI A. Application of endurance time method in linear seismic analysis[J]. Engineering Structure, 2007, 29(10): 2551-2562. doi: 10.1016/j.engstruct.2007.01.009
    [13]
    刘向阳. 增量地震激励分析法的研究与应用[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LIU Xiang-yang. Research and Application on Structural Dynamic Analysis Using Incremental Earthquake Excitation[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [14]
    VALAMANESH V, ESTEKANCHI H E, VAFAI A. Characteristics of second generation endurance time acceleration functions[J]. Scientia Iranica, 2010, 17(1): 53-61.
    [15]
    陈国兴, 庄海洋, 杜修力, 等. 土-地铁车站结构动力相互作用大型振动台模型试验研究[J]. 地震工程与工程振动, 2007, 27(2): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200702026.htm

    CHEN Guo-xing, ZHUANG Hai-yang, DU Xiu-li, et al. Analysis of large shaking table test of dynamic soil-subway station interaction[J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(2): 171-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200702026.htm
    [16]
    建筑抗震设计规范:B50011—2010[S]. 2010.

    Code for Seismic Design of Buildings: B50011—2010[S]. 2010. (in Chinese)
    [17]
    YANG Z, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127.
    [18]
    PARRA-COLMENARES E J. Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and Dilation Response in Soil Systems[D]. Corvallis: Oregon State University, 1996.
    [19]
    Minimum Design Loads for Buildings and Other Structures: ASCE/SEI 7-10[S]. 2011.
    [20]
    潘超, 张瑞甫. EQSignal:地震波处理与生成工具[CP/OL]. 

    PAN Chao, ZHANG Rui-fu. A useful tool to process and generate earthquake signals[CP/OL].  (in Chinese)
    [21]
    PAN C, ZHANG R, LUO H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2017, 24(12): 2562-2575.
    [22]
    ARIAS A. A Measure of Earthquake Intensity. Seismic Design of Nuclear Power Plants[M]. Cambridge MA: MIT Press, 1970.
    [23]
    钟紫蓝, 申轶尧, 甄立斌, 等. 地震动强度参数与地铁车站结构动力响应指标分析[J]. 岩土工程学报, 2019, 42(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003014.htm

    ZHONG Zi-lan, SHEN Yi-yao, ZHEN Li-bin, et al. Ground motion intensity measures and dynamic response indexes of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2019, 42(3): 486-494. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003014.htm
  • Related Articles

    [1]JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018
    [2]ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014
    [6]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [8]Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [9]NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102.
    [10]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return