Citation: | ZHONG Zi-lan, ZHEN Li-bin, CHEN Qun, ZHAO Mi, DU Xiu-li. Optimal duration of endurance time acceleration functions for shallow buried underground structures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 698-705. DOI: 10.11779/CJGE202104012 |
[1] |
杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm
DU Xiu-li, MA Chao, LU De-chun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm
|
[2] |
李田彬. 汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J]. 工程地质学报, 2008, 16(6): 742-750. doi: 10.3969/j.issn.1004-9665.2008.06.003
LI Tian-bin. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 742-750. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.06.003
|
[3] |
SEAOC. Performance Based Seismic Engineering of buildings[R]. Version 2000 Committee. Sacramento: Structural Engineers Association of California, 1995.
|
[4] |
刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008, 41(4): 73-80. doi: 10.3321/j.issn:1000-131X.2008.04.011
LIU Jing-bo, LIU Xiang-qing, LI Bin. A pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008, 41(4): 73-80. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.04.011
|
[5] |
刘晶波, 刘祥庆, 薛颖亮. 地下结构抗震分析与设计的Pushover方法适用性研究[J]. 工程力学, 2009, 26(1): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm
LIU Jing-bo, LIU Xiang-qing, XUE Ying-liang. Study on applicability of a pushover analysis method for seismic analysis and design of underground structures[J]. Engineering Mechanics, 2009, 26(1): 49-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm
|
[6] |
刘晶波, 王文晖, 赵冬冬, 等. 循环往复加载的地下结构Pushover分析方法及其在地震损伤分析中的应用[J]. 地震工程学报, 2013, 35(1): 21-28. doi: 10.3969/j.issn.1000-0844.2013.01.0021
LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Pushover analysis method of underground structures under reversal load and its application in seismic damage analysis[J]. China Earthquake Engineering Journal, 2013, 35(1): 21-28. (in Chinese) doi: 10.3969/j.issn.1000-0844.2013.01.0021
|
[7] |
VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514. doi: 10.1002/eqe.141
|
[8] |
HARIRI-ARDEBILI M, SAOUMA V. Probabilistic seismic demand model and optimal intensity measure for concrete dams[J]. Structure Safety, 2016, 59: 67-85. doi: 10.1016/j.strusafe.2015.12.001
|
[9] |
JALAVER F, CORNELL C. Alternative non-linear demand estimation methods for probability-based seismic assessments[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(8): 951-972. doi: 10.1002/eqe.876
|
[10] |
钟紫蓝, 甄立斌, 申轶尧, 等. 基于耐震时程分析法的地下结构抗震性能评价[J]. 岩土工程学报, 2020, 42(8): 1482-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008019.htm
ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, et al. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008019.htm
|
[11] |
ESTEKANCHI H E, VAFAI A, SADEGHAZAR M. Endurance time method for seismic analysis and design of structures[J]. Scientia Iranica, 2004, 11(4): 361-370.
|
[12] |
ESTEKANCHI H E, VALAMANESH V, VAFAI A. Application of endurance time method in linear seismic analysis[J]. Engineering Structure, 2007, 29(10): 2551-2562. doi: 10.1016/j.engstruct.2007.01.009
|
[13] |
刘向阳. 增量地震激励分析法的研究与应用[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LIU Xiang-yang. Research and Application on Structural Dynamic Analysis Using Incremental Earthquake Excitation[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
[14] |
VALAMANESH V, ESTEKANCHI H E, VAFAI A. Characteristics of second generation endurance time acceleration functions[J]. Scientia Iranica, 2010, 17(1): 53-61.
|
[15] |
陈国兴, 庄海洋, 杜修力, 等. 土-地铁车站结构动力相互作用大型振动台模型试验研究[J]. 地震工程与工程振动, 2007, 27(2): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200702026.htm
CHEN Guo-xing, ZHUANG Hai-yang, DU Xiu-li, et al. Analysis of large shaking table test of dynamic soil-subway station interaction[J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(2): 171-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200702026.htm
|
[16] |
建筑抗震设计规范:B50011—2010[S]. 2010.
Code for Seismic Design of Buildings: B50011—2010[S]. 2010. (in Chinese)
|
[17] |
YANG Z, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127.
|
[18] |
PARRA-COLMENARES E J. Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and Dilation Response in Soil Systems[D]. Corvallis: Oregon State University, 1996.
|
[19] |
Minimum Design Loads for Buildings and Other Structures: ASCE/SEI 7-10[S]. 2011.
|
[20] |
潘超, 张瑞甫. EQSignal:地震波处理与生成工具[CP/OL].
PAN Chao, ZHANG Rui-fu. A useful tool to process and generate earthquake signals[CP/OL]. (in Chinese)
|
[21] |
PAN C, ZHANG R, LUO H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2017, 24(12): 2562-2575.
|
[22] |
ARIAS A. A Measure of Earthquake Intensity. Seismic Design of Nuclear Power Plants[M]. Cambridge MA: MIT Press, 1970.
|
[23] |
钟紫蓝, 申轶尧, 甄立斌, 等. 地震动强度参数与地铁车站结构动力响应指标分析[J]. 岩土工程学报, 2019, 42(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003014.htm
ZHONG Zi-lan, SHEN Yi-yao, ZHEN Li-bin, et al. Ground motion intensity measures and dynamic response indexes of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2019, 42(3): 486-494. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003014.htm
|
[1] | JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018 |
[2] | ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014 |
[6] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[8] | Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6). |
[9] | NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102. |
[10] | Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100. |
1. |
陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
![]() | |
2. |
冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
![]() | |
3. |
李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 .
![]() | |
4. |
林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
![]() | |
5. |
刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
![]() | |
6. |
王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
![]() | |
7. |
倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
![]() | |
8. |
康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .
![]() |