• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Hua-feng, QI Yu, LI Jian-lin, JIANG Qiao, ELEYAS Assefa, LI Xin-zhe. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 634-643. DOI: 10.11779/CJGE202104005
Citation: DENG Hua-feng, QI Yu, LI Jian-lin, JIANG Qiao, ELEYAS Assefa, LI Xin-zhe. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 634-643. DOI: 10.11779/CJGE202104005

Degradation mechanism of intermittent jointed sandstone under water-rock interaction

More Information
  • Received Date: August 02, 2020
  • Available Online: December 04, 2022
  • Under the action of periodic rising and falling of reservoir water level, the damage and deterioration of the jointed rock mass in the hydro-fluctuation belt of a reservoir bank slope is likely to cause the reservoir bank slope to develop in an unstable direction. Based on this, the water-rock interaction tests on the intermittent joint sandstone are carried out. The degradation law and mechanism are comprehensively analyzed by combining the mechanical tests and the micro-structure detection. The results show that: (1) In the long-term process of water-rock interaction, the compressive strength and deformation modulus of intermittent jointed rock samples exhibit obvious tendency of deterioration, and there are obvious non-uniformity. Among them, the stage deterioration degree caused by the first three water-rock interaction periods is obviously larger, and the stage deterioration degree obviously decreases and tends to be stable after the five water-rock interaction periods. (2) Under the water-rock interaction, the mechanical parameters of different joint dip angles have different degradation degrees, and the overall distribution of stage deterioration degrees is U-shaped. When the joint dip angle is around 0° or 90°, the jointed rock sample changes from obvious tensile failure to shear one. The change characteristics of failure mode are obvious, and the corresponding mechanical parameters deteriorate greatly. When the joint dip angle is about 60°, the jointed rock sample maintains the shear failure of the joint plane as a whole, and the failure mode change characteristics are not obvious, and the corresponding mechanical parameters have a relatively small extent. These changes also make the anisotropic mechanical properties of jointed rock samples gradually weakened. (3) During the long-term operation of the reservoir bank slope, the occurrence of jointed rock mass in the hydro-fluctuation belt directly affects the deterioration trend and deformation and failure characteristics of the water-rock interaction. Therefore, in the long-term deformation stability analysis of the bank slope, attention should be paid to the deterioration of mechanical properties of rock mass in the hydro-fluctuation belt and the occurrence difference of jointed rock mass and transformation of its deformation and failure mode under water-rock interaction.
  • [1]
    王思敬, 马凤山, 杜永康. 水库地区的水-岩作用及其地质环境的影响[J]. 工程地质学报, 1996, 4(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ603.000.htm

    WANG Si-jing, MA Feng-shan, DU Yong-kang. The rock-water interaction in reservoir areas and its geoenvironmental effect[J]. Journal of Engineering Geology, 1996, 4(3): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ603.000.htm
    [2]
    王士天, 刘汉超, 张倬元. 大型水域水岩相互作用及其环境效应研究[J]. 地质灾害与环境保护, 1997, 8(1): 69-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB701.005.htm

    WANG Shi-tian, LIU Han-chao, ZHANG Zhuo-yuan. Study on interaction and environmental effects of water rocks in large water bodies[J]. Journal of Geological Hazard and Environmental Preservation, 1997, 8(1): 69-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB701.005.htm
    [3]
    HALE P A, SHAKOOR A. A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones[J]. Environmental and Engineering Geoscience, 2003, 9(2): 117-130. doi: 10.2113/9.2.117
    [4]
    刘新荣, 傅晏, 王永新, 等. (库)水-岩作用下砂岩抗剪强度劣化规律的试验研究[J]. 岩土工程学报, 2008, 30(9): 1298-1302. doi: 10.3321/j.issn:1000-4548.2008.09.006

    LIU Xin-rong, FU Yan, WANG Yong-xin, et al. Deterioration rules of shear strength of sand rock under water-rock interaction of reservoir[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1298-1302. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.09.006
    [5]
    傅晏, 袁文, 刘新荣, 等. 酸性干湿循环作用下砂岩强度参数劣化规律[J]. 岩土力学, 2018, 39(9): 3331-3339. doi: 10.16285/j.rsm.2016.2711

    FU Yan, YUAN Wen, LIU Xin-rong, et al. Deterioration rules of strength parameters of sandstone under cyclical wetting and drying in acid-based environment[J]. Rock and Soil Mechanics, 2018, 39(9): 3331-3339. (in Chinese) doi: 10.16285/j.rsm.2016.2711
    [6]
    邓华锋, 张恒宾, 李建林, 等. 水-岩作用对砂岩卸荷力学特性及微观结构的影响[J]. 岩土力学, 2018, 39(7): 2344-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807005.htm

    DENG Hua-feng, ZHANG Heng-bin, LI Jian-lin, et al. Effect of water-rock interaction on unloading mechanical properties and microstructure of sandstone[J]. Rock and Soil Mechanics, 2018, 39(7): 2344-2352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807005.htm
    [7]
    姚华彦, 张振华, 朱朝辉. 干湿交替对砂岩力学特性影响的试验研究[J]. 岩土力学, 2010, 31(12): 3704-3708. doi: 10.3969/j.issn.1000-7598.2010.12.002

    YAO Hua-yan, ZHANG Zhen-hua, ZHU Chao-hui. Experimental study of mechanical properties of sandstone under cyclic drying and wetting[J]. Rock and Soil Mechanics, 2010, 31(12): 3704-3708. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.12.002
    [8]
    张吟钗. 水库地震和水-岩作用对库岸边坡动力响应特征的影响研究[D]. 宜昌: 三峡大学, 2019.

    ZHANG Yin-chai. Study on Dynamic Response Characteristics of Reservoir Bank Slope under the Influence of Reservoir Earthquake and Water-rock Interaction[D]. Yichang: China Three Gorges University, 2019. (in Chinese)
    [9]
    王子娟. 干湿循环作用下砂岩的宏细观损伤演化及本构模型研究[D]. 重庆: 重庆大学, 2016.

    WANG Zi-juan. Macroscopic and Microscopic Damage Evolution and Constitutive Model of Sandstone Under Dry-Wet Cycle[D]. Chongqing: Chongqing University, 2016. (in Chinese)
    [10]
    FANG Jing-cheng, DENG Hua-feng, QI Yu, et al. Analysis of changes in the micro morphology of sandstone joint surface under dry-wet cycling[J]. Advances in Materials Science and Engineering, 2019(1): 1-11.
    [11]
    申培武, 唐辉明, 汪丁建, 等. 巴东组紫红色泥岩干湿循环崩解特征试验研究[J]. 岩土力学, 2017, 38(7): 1990-1998. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707019.htm

    SHEN Pei-wu, TANG Hui-ming, WANG Ding-jian, et al. Disintegration characteristics of red-bed mudstone of Badong Formation under wet-dry cycles[J]. Rock and Soil Mechanics, 2017, 38(7): 1990-1998. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707019.htm
    [12]
    HU M, LIU Y, REN J, et al. Laboratory test on crack development in mudstone under the action of dry-wet cycles[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(1): 543-556.
    [13]
    柴波, 殷坤龙, 简文星, 等. 红层水岩作用特征及库岸失稳过程分析[J]. 中南大学学报(自然科学版), 2009, 40(4): 1092-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904043.htm

    CHAI Bo, YIN Kun-long, JIAN Wen-xing, et al. Analysis of water-rock interaction characteristics and bank slope failure process of red-bed[J]. Journal of Central South University (Science and Technology), 2009, 40(4): 1092-1098. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904043.htm
    [14]
    DENG H F, ZHOU M L, LI J L, et al. Creep degradation mechanism by water-rock interaction in the red-layer soft rock[J]. Arabian Journal of Geosciences, 2016, 9(12): 1-12.
    [15]
    ALT-EPPING P, DIAMOND L W, HARING M O, et al. Prediction of water-rock interaction and porosity evolution in a granitoid-hosted enhanced geothermal system, using constraints from the 5 km Basel-1 well[J]. Applied Geochemistry, 2013, 38: 121-133.
    [16]
    王伟, 龚传根, 朱鹏辉, 等. 大理岩干湿循环力学特性试验研究[J]. 水利学报, 2017, 48(10): 1175-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201710006.htm

    WANG Wei, GONG Chuan-gen, ZHU Peng-hui, et al. Experimental study on mechanical properties of marble under hydraulic weathering coupling[J]. Journal of Hydraulic Engineering, 2017, 48(10): 1175-1184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201710006.htm
    [17]
    JENG F S, LIN M L, HUANG T H. Wetting deterioration of soft sandstone—microscopic insights[C]//An International Conference on Geotechnical and Geological Engineering, 2000, Melbourne.
    [18]
    周翠英, 邓毅梅, 谭祥韶, 等. 软岩在饱水过程中微观结构变化规律研究[J]. 中山大学学报(自然科学版), 2003, 42(4): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200304024.htm

    ZHOU Cui-ying, DENG Yi-mei, TAN Xiang-shao, et al. Research on the variation regularities of microstructures in the testing of interaction between soft rocks and water[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(4): 98-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200304024.htm
    [19]
    LIN M L, JENG F S, TSAI L S, et al. Wetting weakening of tertiary sandstones-microscopic mechanism[J]. Environ Geol, 2005, 48: 265-275.
    [20]
    邓华锋, 支永艳, 段玲玲, 等. 水-岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm

    DENG Hua-feng, ZHI Yong-yan, Duan Ling-ling, et al. Research on the mechanical properties of sandstone and the damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm
    [21]
    孙广忠. 岩体结构力学[M]. 北京: 科学出版社, 1988.

    SUN Guang-zhong. The Foundation of Mechanics on Rock Mass Structure[M]. Beijing: Science Press, 1988. (in Chinese)
    [22]
    MÜLLER L. Rock Mechanics[M]. Beijing: China Coal Industry Publishing House, 1981.
    [23]
    李鹏, 刘建, 朱杰兵, 等. 软弱结构面剪切蠕变特性与含水率关系研究[J]. 岩土力学, 2008, 29(7): 1865-1871. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807030.htm

    LI Peng, LIU Jian, ZHU Jie-bing, et al. Research on effects of water content on shear creep behavior of weak structural plane of sandstone[J]. Rock and Soil Mechanics, 2008, 29(7): 1865-1871. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807030.htm
    [24]
    李超, 齐豫, 李涛, 等. 库岸边坡水-岩作用对节理砂岩力学特性影响研究[J]. 水利水电技术, 2019, 50(6): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201906022.htm

    LI Chao, QI Yu, LI Tao, et al. Study on influence of water-rock interaction of reservoir bank slope on mechanical characteristics of jointed sandstone[J]. Water Resources and Hydropower Engineering, 2019, 50(6): 163-168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201906022.htm
    [25]
    王乐华, 柏俊磊, 李建林, 等. 非贯通节理岩体单轴压缩试验研究[J]. 水利学报, 2014, 45(12): 1410-1418. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201412003.htm

    WANG Le-hua, BAI Jun-lei, LI Jian-lin, et al. Study of non-consecutive jointed rock mass under uniaxial compression[J]. Journal of Hydraulic Engineering, 2014, 45(12): 1410-1418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201412003.htm
    [26]
    邓华锋, 潘登, 许晓亮, 等. 三轴压缩作用下断续节理砂岩力学特性研究[J]. 岩土工程学报, 2019, 41(11): 2133-2141. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911023.htm

    DENG Hua-feng, PAN Deng, XU Xiao-liang, et al. Mechanical characteristics of intermittent jointed sandstone under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2133-2141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911023.htm
    [27]
    工程岩体试验方法标准:GB/T 50266—2013[S]. 2013.

    Standard for Tests Method of Engineering Rock Masses: GB/T 50266—2013[S]. 2013. (in Chinese)
    [28]
    SINGH J, RAMAMURTHY T, RAO G V. Strength anisotropies in rocks[J]. Indian Geotechnical Journal, 1989, 19(2): 147-66.
  • Related Articles

    [1]JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018
    [2]ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014
    [6]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [8]Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [9]NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102.
    [10]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return