• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Jie, LI Ze-yao, WAN Peng, TANG Yi-qun, ZHAO Wen-qiang. Effects of seepage in clay-sand composite strata on artificial ground freezing and surrounding engineering environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 471-480. DOI: 10.11779/CJGE202103010
Citation: ZHOU Jie, LI Ze-yao, WAN Peng, TANG Yi-qun, ZHAO Wen-qiang. Effects of seepage in clay-sand composite strata on artificial ground freezing and surrounding engineering environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 471-480. DOI: 10.11779/CJGE202103010

Effects of seepage in clay-sand composite strata on artificial ground freezing and surrounding engineering environment

More Information
  • Received Date: February 01, 2020
  • Available Online: December 04, 2022
  • With the emergence of more and more large-scale cross-sea and river-crossing projects in coastal areas, the artificial ground freezing (AGF) faces more complicated hydrogeological environmental problems and challenges. Based on the engineering background of the large seepage boundary near the frozen soft clay, a scale model is established through strict similarity design to analyze the effects of seepage on the freezing construction of overlying freeze-thaw sensitive soft clay and the surrounding engineering environment under the condition of soft clay with larger seepage sand layer. The temperature, frost-heave force and surface settlement in each affected area under different seepage velocities are measured. The results show that the excessive seepage velocity of the underlying sand layer will make it impossible to complete the freezing, and there is a critical seepage velocity. In addition, the freezing effects of the upper and lower freezing curtain edges of soft clay under seepage conditions are also completely different, especially the stable freezing temperature and the development mode of the frost-heave force. In the area directly affected by seepage, the latent heat effects of seepage on soft clay are significantly weakened, and the phase transition equilibrium time decreases linearly with the increase of seepage velocity. The whole comprehensive research results provide theoretical guidance and valuable advices for the optimization of freezing scheme and construction safety of AGF. The relevant predictions and suggestions are made for construction quality, tunnel safety and environmental management that may be encountered in engineering practice.
  • [1]
    高娟, 冯梅梅, 杨维好. 渗流作用下裂隙岩体冻结温度场分布规律研究[J]. 采矿与安全工程学报, 2013, 30(1): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201301013.htm

    GAO Juan, FENG Mei-mei, YANG Wei-hao. Research on distribution law of frozen temperature field of fractured rock mass with groundwater seepage[J]. Journal of Mining & Safety Engineering, 2013, 30(1): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201301013.htm
    [2]
    张学富, 喻文兵. 寒区隧道渗流场和温度场耦合问题的三维非线性分析[J]. 岩土工程学报, 2006, 28(9): 1095-1100. doi: 10.3321/j.issn:1000-4548.2006.09.009

    ZHANG Xue-fu, YU Wen-bing. Three-dimensional nonlinear analysis for coupled problem of seepage field and temperature field of cold regions tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1095-1100. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.009
    [3]
    郭永富, 梁洪振. 大流速下的地层冻结[J]. 市政技术, 2004, 22(增刊): 345-348. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSW200406001092.htm

    GUO Yong-fu, LIANG Hong-zhen. Ground freezing under high velocity[J]. Municipal Technology, 2004, 22(S0): 345-348. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSW200406001092.htm
    [4]
    赖远明, 吴紫汪. 寒区隧道温度场,渗流场和应力场耦合非线性分析[J]. 岩土工程学报, 1999, 21(5): 529-533. doi: 10.3321/j.issn:1000-4548.1999.05.001

    LAI Yuan-ming, WU Zi-wang. Nonlinear analyses for the couple problem of temperature, seepage and stress fields in cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 529-533. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.05.001
    [5]
    程桦, 林键, 王彬, 等. 饱和砂层渗流冻结水热耦合模型与试验验证[J]. 科学技术与工程, 2018, 18(12): 38-44. doi: 10.3969/j.issn.1671-1815.2018.12.006

    CHENG Hua, LIN Jian, WANG Bin, et al. Mathematical model and test verification of seepage freezing in saturated sand layer[J]. Science Technology and Engineering, 2018, 18(12): 38-44. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.12.006
    [6]
    周晓敏, 龙肖阁. 渗流地层人工冻结温度场和渗流场之数值研究[J]. 煤炭学报, 2007, 32(2): 24-28. doi: 10.13225/j.cnki.jccs.2007.01.005

    ZHOU Xiao-min, LONG Xiao-ge. Numerical research on the temperature and seepage fields of artificial seepage ground freezing[J]. Journal of China Coal Society, 2007, 32(2): 24-28. (in Chinese) doi: 10.13225/j.cnki.jccs.2007.01.005
    [7]
    HU R, LIU Q, XING Y. Case study of heat transfer during artificial ground freezing with groundwater flow[J]. Water, 2018, 10(10): 1322. doi: 10.3390/w10101322
    [8]
    VITEL M, ROUABHI A, TIJANI M. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities[J]. Computers and Geotechnics, 2016, 73: 1-15. doi: 10.1016/j.compgeo.2015.11.014
    [9]
    AHMED M, MENG-MENG Z, ZAKI A M. Optimization of artificial ground freezing in tunneling in the presence of seepage flow[J]. Computers and Geotechnics, 2016, 75: 112-125. doi: 10.1016/j.compgeo.2016.01.004
    [10]
    PIMENTEL E, SRES A, ANAGNOSTOU G. Large-scale laboratory tests on artificial ground freezing under seepage flow conditions[J]. Géotechnique, 2012, 62(3): 227-241. doi: 10.1680/geot.9.P.120
    [11]
    崔灏. 渗流作用下富水砂卵石层井筒冻结壁形成研究[J]. 煤炭技术, 2018, 37(12): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201812021.htm

    CUI Hao. Research on the formation of the freezing wall of the shaft in the water-rich sand and gravel layer under the action of seepage[J]. Coal Technology, 2018, 37(12): 61-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201812021.htm
    [12]
    陈湘生, 濮家骝, 殷昆亭, 等. 地基冻-融循环离心模型试验研究[J]. 清华大学学报(自然科学版), 2002, 42(4): 531-534. doi: 10.3321/j.issn:1000-0054.2002.04.029

    CHEN Xiang-sheng, PU Jia-liu, YIN Kun-ting, et al. Centrifuge modelling tests of foundation undergoing two cycles of frost heave and thaw settlement[J]. Journal of Tsinghua University (Natural Science Edition), 2002, 42(4): 531-534. (in Chinese) doi: 10.3321/j.issn:1000-0054.2002.04.029
    [13]
    于琳琳, 徐学燕. 人工侧向冻结条件下土的冻结试验[J]. 岩土力学, 2009, 30(1): 231-235. doi: 10.3969/j.issn.1000-7598.2009.01.041

    YU Lin-lin, XU Xue-yan. Test analysis of disturbed soil by lateral artificial freezing[J]. Rock and Soil Mechanics, 2009, 30(1): 231-235. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.01.041
    [14]
    ZHOU J, TANG Y. Artificial ground freezing of fully saturated mucky clay: thawing problem by centrifuge modeling[J]. Cold Regions Science and Technology, 2015, 117: 1-11. doi: 10.1016/j.coldregions.2015.04.005
    [15]
    王升福, 杨平, 刘贯荣, 等人工冻融软黏土微观孔隙变化及分形特性分析[J]. 岩土工程学报, 2016, 38(7): 1254-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607012.htm

    WANG Sheng-fu, YANG Ping, LIU Guan-rong, et al. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607012.htm
    [16]
    陈婷婷, 高彦斌, 徐超, 等. 结构性对上海软粘土的压缩特性影响[C]//第八届全国工程地质大会论文集, 2008, 上海.

    CHEN Ting-ting, GAO Yan-bin, XU Chao, et al. Influence of soft structure on the compressibility of Shanghai clay[C]//Proceedings of the Eighth National Engineering Geology Conference, 2008, Shanghai. (in Chinese)
    [17]
    ZHOU J, TANG Y. Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing[J]. Engineering Geology, 2015, 190(14): 98-108.
    [18]
    崔广心. 冻结法凿井的模拟试验原理[J]. 中国矿业大学学报, 1989, 18(1): 59-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198901007.htm

    CUI Guang-xin. The principle of model test for freezing shaft sinking[J]. Journal of China University of Mining & Technology, 1989, 18(1): 59-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198901007.htm
    [19]
    张驰, 张涛, 韩涛, 等. 管壁温度非恒定条件下单管冻结温度场解析计算[J]. 煤炭科学技术, 2012, 40(3): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201203007.htm

    ZHANG Chi, ZHANG Tao, HAN Tao, et al. Analysis calculation on single pipeline freezing temperature field under non-constant condition of pipe wall temperature[J]. Coal Science and Technology, 2012, 40(3): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201203007.htm
    [20]
    阴悦, 罗竹, 张勇. 渗流地层斜井帷幕冻结温度场研究[J]. 煤炭技术, 2017, 36(12): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201712018.htm

    YIN Yue, LUO Zhu, ZHANG Yong. Research on freezing temperature field of inclined shaft in seepage stratum[J]. Coal Technology, 2017, 36(12): 45-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201712018.htm
    [21]
    李东阳, 刘波, 王莉, 等. 冻结器传热的冷源相似准则[J]. 岩石力学与工程学报, 2015, 34(4): 814-820. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504019.htm

    LI Dong-yang, LIU Bo, WANG Li, et al. Similarity criterion of freezing pipe as heat sink during heat exchange[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 814-820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504019.htm
    [22]
    李方政, 夏明萍. 基于指数积分函数的人工冻土温度场解析研究[J]. 东南大学学报:自然科学版, 2004, 34(4): 469-473. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200404010.htm

    LI Fang-zheng, XIA Ming-ping. Study on analytical solution of temperature field of artificial frozen soil by exponent- integral function[J]. Journal of Southeast University: Natural Science Edition, 2004, 34(4): 469-473. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200404010.htm
    [23]
    陆宏轮. 饱和多孔介质冻融过程的混合物连续介质理论[J]. 西南交通大学学报, 2001(6): 599-603. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200106010.htm

    LU Hong-lun. Continuum theory of mixture for freezing and thawing of water-saturated porous media[J]. Journal of Southwest Jiaotong University, 2001(6): 599-603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200106010.htm
    [24]
    高娟, 冯梅梅, 高乾, 等. 地铁联络通道冻结施工的热-流-固耦合分析[J]. 冰川冻土, 2013, 35(4): 904-911. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201304014.htm

    GAO Juan, FENG Mei-mei, GAO Gan, et al. THM coupling analysis of connected aisle in metro construction by artificial freezing method[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 904-911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201304014.htm
    [25]
    孙闯, 林增华. 高水压越江隧道联接通道渗流应力耦合分析[J]. 长江科学院院报, 2011, 28(11): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201111013.htm

    SUN Chuang, LIN Zeng-hua. Coupled seepage-stress in the connection aisle of cross-river tunnel under high water pressure[J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(11): 55-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201111013.htm
    [26]
    CHEN Y L, AZZAM R, FERNANDEZ-STEEGER T M, et al. Studies on construction pre-control of a connection aisle between two neighboring tunnels in Shanghai by means of 3D FEM, neural networks and fuzzy logic[J]. Geotechnical and Geological Engineering, 2009, 27(1): 155-167.
    [27]
    KETCHAM S A, BLACK P B. Initial Results From Small-Scale Frost Heave Experiments in a Centrifuge[R]. Chicago: CRREL Report, 1995.
  • Cited by

    Periodical cited type(20)

    1. 杨哲,蔡海兵,王彬,李孟凯,庞昌强. 高流速富水砂层地铁隧道液氮冻结温度场演化规律研究. 铁道科学与工程学报. 2025(01): 307-319 .
    2. 谭智勇,王超林,龙安发. 外部水源作用下岩石液氮冻结试验研究. 岩土工程学报. 2024(02): 415-425 . 本站查看
    3. 刘爽,李晓康,李旭,聂雯,林旸,盛志刚. 渗流作用下粗粒土冻结壁交圈规律及预测模型探索. 冰川冻土. 2024(01): 247-259 .
    4. 刘欣,冯利华,任全军,沈宇鹏,韩昀希,刘越,韩风雷. 渗流地层地铁联络通道冻结壁形成过程及其影响因素分析. 中南大学学报(自然科学版). 2024(04): 1463-1476 .
    5. 孙立强,时鹏,郎瑞卿,商安策. 渗流作用下人工冻结特性室内模型试验研究. 岩石力学与工程学报. 2024(S1): 3530-3542 .
    6. 孙立强,商安策,郎瑞卿,苗雨. 渗流地层人工冻结壁交圈时间计算方法. 岩石力学与工程学报. 2023(S1): 3663-3673 .
    7. 樊文虎,杨平,王升福. 粉质黏土冻融前后细观结构试验研究. 森林工程. 2023(03): 182-190 .
    8. 宋帅,姜艳,尹文纲. 冻结法施工中渗流场对温度场的影响分析. 徐州工程学院学报(自然科学版). 2023(04): 68-76 .
    9. 荣传新,王彬,程桦,董艳宾,杨凡. 大流速渗透地层人工冻结壁形成机制室内模型试验研究. 岩石力学与工程学报. 2022(03): 596-613 .
    10. 陈盈盈,周桂云,余长青. 渗流对人工冻结温度场影响的研究. 四川水泥. 2022(03): 61-63 .
    11. 刘利. 冻结法施工在某隧道扩挖中的应用. 市政技术. 2022(04): 144-148+192 .
    12. 李忠超,白天麒,梁荣柱,肖铭钊,蔡兵华,叶超,吴文兵. 富水粉细砂层水平冻结效果试验及数值模拟. 工业建筑. 2022(03): 1-9 .
    13. 黄建华,严耿明,覃少杰. 液氮冻结加固冻结管内换热机制及对流换热系数研究. 岩土力学. 2022(09): 2624-2633 .
    14. 徐陈明,胡俊,熊辉,林小淇,周禹暄,冯继超,王志鑫. 一种基坑坑底加固结构温度场变化规律研究. 海南大学学报(自然科学版). 2022(04): 434-440 .
    15. 丁飞,张鲁鲁,曹新刚,李远荣,汪亦显. 微冻结法盾构隧道衬砌管片冻结性能参数试验研究. 工程与建设. 2022(05): 1379-1381+1416 .
    16. 赵象卓,王春林,王宇,李彦民,姬强,闫永乐. 富水岩层井筒超长冻结自然解冻趋势与注浆技术. 煤炭工程. 2021(08): 43-48 .
    17. 刘娟. 江底强渗透地层冻结法可行性分析. 江西建材. 2021(08): 193-195 .
    18. 周洁,李泽垚,田万君. 渗流作用对人工冻结土体特性的影响. 铁道工程学报. 2021(07): 12-17 .
    19. 汪恩良,任志凤,韩红卫,田雨,胡胜博,刘兴超. 超低温冻结黏土单轴抗压力学性质试验研究. 岩土工程学报. 2021(10): 1851-1860 . 本站查看
    20. 周扬,武子寒,许程,卢萌盟,周国庆. 高温下饱和冻土一维融化热固结模型及解答. 岩土工程学报. 2021(12): 2190-2199 . 本站查看

    Other cited types(8)

Catalog

    Article views (274) PDF downloads (185) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return