• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Ke, LIU Wen-jie, JIAO Biao, ZHANG Qing-he, LIU Shuai, ZHANG Zhai-nan. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 85-93. DOI: 10.11779/CJGE202101010
Citation: YANG Ke, LIU Wen-jie, JIAO Biao, ZHANG Qing-he, LIU Shuai, ZHANG Zhai-nan. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 85-93. DOI: 10.11779/CJGE202101010

Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining

More Information
  • Received Date: May 10, 2020
  • Available Online: December 04, 2022
  • In order to analyze the influences of breaking of deep thick hard roofs on the safe mining of thick coal seam, a large three-dimensional physical simulation experiment (3500 mm×3000 mm×2000 mm) is constructed, and the experimental study on the double-working face mining with coal pillar is carried out according to the engineering geology and mining conditions of coal face 402102 of Hujiahe Coal Mine. The grating displacement continuous monitoring device is used to monitor the displacement of overburden in real time, and the fracture migration laws and the dynamic evolution characteristics of "three zones" of overburden in thick coal seam mining under thick hard roofs are obtained. The results show that: when the thick and hard key stratum is deformed and broken, the weak rock stratum will move in coordination, the displacement at the monitoring point will increase sharply, and the displacement curve will be pushed forward in a "stepped" way with the advancing of working face. When one side of the working face is mined out, the first weighting interval of SKS1 (siltstone) of working face 402102 is 43 m, and the periodic weighting interval is 21 m. The first weighting interval of SKS2 (coarse sandstone) is 73 m, and the periodic weighting interval is 51 m. The first weighting interval of SKS3 (medium sandstone) is 171 m. When SKS2 breaks periodically and SKS3 breaks for the first time, the overburden rocks move in a wide range and the ground pressure is intense. Under the influences of mining-induced overburden structure in goaf 402103, the overlying rocks of the return airway on the working face 402102 migrate violently, and the roadway is greatly affected by dynamic pressure. According to the displacement at the monitoring points and the size of overburden deformation and fragmentation expansion factor max (Ki), the development morphology of the "three zones" is identified. Both SKS1 and SKS2 are in the caving zone, and the heights of the caving zone and fracture zone increase in a "stepped" manner with the advancing of the working face.
  • [1]
    王家臣. 厚煤层开采理论与技术[M]. 北京: 冶金工业出版社, 2009: 27-51.

    WANG Jia-chen. The theory and Technique on the Thick Coal Seam Mining[M]. Beijing: Metallurgical Industry Press, 2009: 47-51. (in Chinese)
    [2]
    王云广, 郭文兵, 白二虎, 等. 高强度开采覆岩运移特征与机理研究[J]. 煤炭学报, 2018, 43(增刊1): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1004.htm

    WANG Yun-guang, GUO Wen-bing, BAI Er-hu, et al. Characteristics and mechanism of overlying strata movement due to high-intensity mining[J]. Journal of China Coal Society, 2018, 43(S1): 28-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1004.htm
    [3]
    王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报, 2018, 43(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801006.htm

    WANG Jia-chen. Engineering practice and theoretical progress of top coal caving mining technology in China[J]. Journal of China Coal Society, 2018, 43(1): 43-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801006.htm
    [4]
    孟宪锐, 王鸿鹏, 刘朝晖, 等. 我国厚煤层开采方法的选择原则与发展现状[J]. 煤炭科学技术, 2009, 37(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200901014.htm

    MENG Xian-rui, GANG Hong-peng, LIU Chao-hui, et al. Selection principle and development status of thick seam minim methods in China[J]. Coal Science and Technology, 2009, 37(1): 39-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200901014.htm
    [5]
    谢广祥, 杨科, 常聚才, 等. 综放采场围岩支承压力分布及动力灾害的层厚效应[J]. 煤炭学报, 2006, 31(6): 731-735. doi: 10.3321/j.issn:0253-9993.2006.06.008

    XIE Guang-xiang, YANG Ke, CHANG Ju-cai, et al Surrounding rock abutment pressure distribution and thickness effect of dynamic catastrophic in fully mechanized sub level mining stope[J]. Journal of China Coal Society, 2006, 31(6): 731-735. (in Chinese) doi: 10.3321/j.issn:0253-9993.2006.06.008
    [6]
    李振雷, 何学秋, 窦林名. 综放覆岩破断诱发冲击地压的防治方法与实践[J]. 中国矿业大学学报, 2018, 47(1): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm

    LI Zhen-lei, HE Xue-qiu, DOU Lin-ming. Control measures by overburden and practice for rock burst induced fracture in top-coal caving mining[J]. Journal of China University of Mining and Technology, 2018, 47(1): 162-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm
    [7]
    钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.

    QIAN Ming-gao, SHI Ping-wu, XU Jia-ling. Mining Pressure and Strata Control[M]. Xuzhou: China University of Ming and Technology Press, 2010: 325-328. (in Chinese)
    [8]
    许家林, 鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报, 2011, 30(8): 1547-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108006.htm

    XU Jia-lin, JU Jin-feng. Structural morphology of key stratum and its influence on strata behavior in fully mechanized face with super large height[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1547-1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108006.htm
    [9]
    张培鹏, 蒋力帅, 刘绪峰, 等. 高位硬件厚岩层采动覆岩结构演化特征及致灾规律[J]. 采矿与安全工程学报, 2017, 34(5): 852-860. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201705005.htm

    ZHANG Pei-peng, JIANG Li-shuai, LIU Xu-feng, et al. Mining-induced overlying strata structure evolution characteristic and disaster-triggering undr high level hard thick strata[J]. Journal of Mining and Safety Engineering, 2017, 34(5): 852-860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201705005.htm
    [10]
    柴敬, 雷武林, 杜文刚, 等. 分布式光纤监测的采场巨厚复合关键层变形试验研究[J]. 煤炭学报, 2020, 45(1): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001006.htm

    CHAI Jing, LEI Wu-lin, DU Wen-gang, et al. Deformation of huge thick compound key layer in stope based on distributed optical fiber sensing monitoring[J]. Journal of China Coal Society, 2020, 45(1): 44-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001006.htm
    [11]
    朱卫兵, 于斌. 大空间采场远场关键层破断形式及其对矿压显现的影响[J]. 煤炭科学技术, 2018, 46(1): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801014.htm

    ZHU Wei-bing, YU Bin. Breakage form and its effect on strata behavior of far field key stratum in large space stope[J]. Coal Science and Technology, 2018, 46(1): 99-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801014.htm
    [12]
    于斌, 朱卫兵, 高瑞, 等. 特厚煤层综放开采大空间采场覆岩结构及作用机制[J]. 煤炭学报, 2016, 41(3): 571-580. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603008.htm

    YU Bin, ZHU Wei-bing, GAO Rui. Strata structure and its effect mechanism of large space stope for fully-mechanized sublevel caving mining of extremely thick coal seam[J]. Journal of China Coal Society, 2016, 41(3): 571-580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603008.htm
    [13]
    于斌, 朱卫兵, 李竹, 等. 特厚煤层开采远场覆岩结构失稳机理[J]. 煤炭学报, 2018, 43(9): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809004.htm

    YU Bin, ZHU Wei-bing, LI Zhu, et al. Mechanism of the instability of strata structure in far field for super-thick coal seam mining[J]. Journal of China Coal Society, 2018, 43(9): 2398-2407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809004.htm
    [14]
    窦林名, 贺虎. 煤矿覆岩空间结构OX-F-T演化规律研究[J]. 岩石力学与工程学报, 2012, 31(3): 453-460. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201203005.htm

    DOU Lin-ming, HE Hu. Study of OX-F-T spatial structure evolution of overlying strata in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 453-460. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201203005.htm
    [15]
    姜福兴, 张兴民, 杨淑华, 等. 长壁采场覆岩空间结构探讨[J]. 岩石力学与工程学报, 2006, 25(5): 979-984. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200605019.htm

    JIANG Fu-xing, ZHANG Xing-min, YANG Shu-hua, et al. Discussion on overlying strata spatial structures of longwall in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 979-984. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200605019.htm
    [16]
    李振雷, 何学秋, 窦林名. 综放覆岩破断诱发冲击地压的防治方法与实践[J]. 中国矿业大学学报, 2018, 47(1): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm

    LI Zhen-lei, HE Xue-qiu, DOU Lin-ming. Control measures by overburden and practice for rock burst induced fracture in top-coal caving mining[J]. Journal of China University of Mining and Technology, 2018, 47(1): 162-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm
    [17]
    王晓振, 许家林, 韩红凯, 等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报, 2019, 44(12): 3740-3749. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912015.htm

    WANG Xiao-zhen, XU Jia-lin, HAN Hong-kai. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society, 2019, 44(12): 3740-3749. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912015.htm
    [18]
    弓培林, 靳钟铭. 大采高采场覆岩结构特征及运动规律研究[J]. 煤炭学报, 2004, 29(1): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200401002.htm

    GONG Pei-lin, JIN Zhong-ming. Study on the structure characteristics and movement laws of overlying strata with large mining height[J]. Journal of China Coal Society, 2004, 29(1): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200401002.htm
    [19]
    张强勇, 李术才, 郭小红, 等. 铁晶砂胶结新型岩土相似材料的研制及其应用[J]. 岩土力学, 2008, 29(8): 2126-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808025.htm

    ZHANG Qiang-yong, LI Shu-cail, GUO Xiao-hong, et al. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application[J]. Rock and Soil Mechanics, 2008, 29(8): 2126-2130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808025.htm
    [20]
    高富强, 王兴库. 岩体力学参数敏感性正交数值模拟试[J]. 采矿安全与工程学报, 2008, 25(1): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200801023.htm

    GAO Fu-qiang, WANG Xing-ku. Orthogonal numerical simulation on sensitivity of rock mechanical parameters[J]. Journal of Mining and Safety Engineering, 2008, 25(1): 95-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200801023.htm
    [21]
    张庆贺, 杨科, 袁亮, 等. 基于位移连续监测的采场两带变形垮落特性试验研究[J]. 工程科学与技术, 2019, 51(3): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903005.htm

    ZHANG Qing-he, YANG Ke, YUAN Liang, et al. Experimental study on deformation and collapse characteristics of two stope belts based on continuous displacement monitoring[J]. Advanced Engineering Sciences, 2019, 51(3): 36-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903005.htm
    [22]
    SHAO H, JIANG S G, WANG L Y, et al. Bulking factor of the strata overlying the gob and a three-dimensional numerical simulation of the air leakage flow field[J]. Mining Science and Technology (China), 2011, 21: 261-266.
  • Related Articles

    [1]The influence of geometric characteristics of intersecting fractures in rock mass on solute transport[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240134
    [2]JIANG Zhongming, ZHONG Bing, WAN Fa. Migration laws of pollutants in surrounding rock of underground oil storage caverns[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2529-2536. DOI: 10.11779/CJGE20221211
    [3]CAO Anye, BAI Xianxi, CAI Wu, WEN Yingyuan, LI Xuwei, MA Xiang, HUANG Rui. Mechanism for stress abnormality and rock burst in variation zone of roof-stratum thickness[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 512-520. DOI: 10.11779/CJGE20211194
    [4]YANG Guang-yu, JIANG Fu-xing, QU Xiao-cheng, LI Lin, WEI Quan-de, LI Nai-lu. Comprehensive monitoring and early warning technology for rock burst of tunneling face with thick coal seams[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1949-1958. DOI: 10.11779/CJGE201910021
    [5]LI Xin-xin, XU Yi. Hydraulic and solute transport coupling model for fractured rock mass with discrete fracture network using computational method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1164-1171. DOI: 10.11779/CJGE201906022
    [6]YANG Wei-li, JIANG Fu-xing, YANG Peng, ZHU Quan-jie, WEI Quan-de, WANG Cun-wen. Mechanism of repeated rock bursts in extra-thick coal seam[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2045-2050. DOI: 10.11779/CJGE201511015
    [7]JIANG Jin-quan, WANG Pu, WU Quan-lin, ZHANG Pei-peng. Evolution laws and prediction of separated stratum space under overlying high-position magmatic rocks[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1769-1779. DOI: 10.11779/CJGE201510004
    [8]YANG Wei-feng, JI Yu-bing, ZHAO Guo-rong, SHEN Ding-yi. Experimental study on migration characteristics of mixed water and sand flows induced by mining under thin bedrock and thick unconsolidated formations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 686-692.
    [9]WANG Luofeng, JIANG Fuxing, YU Zhengxing. Similar material simulation experiment on destressing effects of the deep thick coal seam with high burst liability after mining upper and lower protective seams[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 442-446.
    [10]LIU Hongyuan, LIU Jianxin, TANG Chunan. Numerical simulation of failure process of overburden rock strata caused by mining excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 201-204.
  • Cited by

    Periodical cited type(26)

    1. 陈存强,汪义龙,周延明,顾雷雨,曹睿,冯来宏,高利晶,杨康. 灵东煤矿上分层综放开采型煤相似材料模拟试验研究. 煤炭技术. 2024(01): 51-55 .
    2. 郑纪峰,李啸天. 厚硬顶板隅角悬顶分段多次水力压裂技术研究. 煤炭技术. 2024(03): 21-25 .
    3. 刘洪涛,罗紫龙,韩子俊,韩洲,陈小港,彭佳琛. 厚煤层大采高综放工作面覆岩断裂演化规律研究. 煤炭科学技术. 2024(03): 1-12 .
    4. 秦志宏,赵光明,孟祥瑞,程详,顾清恒,朱世奎. 基于分布式光纤技术的深井工作面覆岩采动裂隙演化规律研究. 采矿与安全工程学报. 2024(05): 889-898 .
    5. 彭宝山,王永乐,杨学孟. 特厚弱胶结顶板煤层综放开采覆岩破坏特征与强矿压机理. 煤炭技术. 2024(10): 75-80 .
    6. 孙斌杨,袁亮,张平松,吴荣新. 巨厚砾岩下采场覆岩运移与离层演化的光-电感知试验研究. 中国矿业大学学报. 2024(05): 977-992 .
    7. 于美鲁,王中文,刘瑜,李春元,李政岱,王鲁瑀. 不同松散层第四含水层水压条件下关键层破断力学机理研究. 采矿与岩层控制工程学报. 2024(05): 132-147 .
    8. 陈璐,余茜,罗容,周子龙,曾铃,郭一鹏. 柱式采空区矿柱失稳诱导边坡滑塌机制研究. 采矿与岩层控制工程学报. 2024(05): 148-163 .
    9. 杨华富,沈建廷. 基于数值模拟的厚煤层回采期间覆岩采动应力及能量变化研究. 陕西煤炭. 2024(12): 21-25 .
    10. 薛梦. 基于断裂带基岩地下3层车站施工技术研究. 建筑机械. 2024(12): 191-195 .
    11. 任连伟,李梁,王自强,邹友峰,顿志林,王树仁. 采空区场地高速铁路路基动力加载系统研发与模型试验. 煤炭学报. 2024(12): 4752-4767 .
    12. 肖江,张成,孙亚超. 大巷煤柱回收工作面覆岩破坏及应力演化规律研究. 煤炭技术. 2023(04): 10-14 .
    13. 徐刚,张春会,张震,刘晓刚,冯彦军,蔺星宇,马镕山,刘前进,李正杰. 综放工作面顶板灾害类型和发生机制及防治技术. 煤炭科学技术. 2023(02): 44-57 .
    14. 刘海洋,孟凡林,赵刚. 榆树泉煤矿厚硬顶板无煤柱自成巷卸压方案设计研究. 能源与环保. 2023(03): 286-292 .
    15. 张村,任赵鹏,兰世勇,方尚鑫,芦佳乐,乔元栋. 煤矿开采损伤数值模拟量化表征与应用. 矿业科学学报. 2023(03): 398-408 .
    16. 金宁平,付宝杰. 厚煤层分层采动直覆砂岩运移规律研究. 矿业研究与开发. 2023(05): 43-49 .
    17. 左建平,于美鲁,孙运江,吴根水. 不同厚度岩层破断模式转变机理及力学模型分析. 煤炭学报. 2023(04): 1449-1463 .
    18. 陆占金. 薄基岩厚松散层煤层覆岩导水断裂带发育高度研究. 矿业安全与环保. 2023(03): 105-110 .
    19. 刘元嘉. 综放工作面过集中煤柱矿压显现规律及控制技术. 能源与节能. 2023(11): 131-133 .
    20. 陈嘉,赵忠明,吴建帮. 采动覆岩“三带”移动变形及裂隙几何分形规律研究. 能源与环保. 2023(11): 36-43 .
    21. 李树刚,刘李东,赵鹏翔,林海飞,徐培耘,卓日升. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析. 煤炭科学技术. 2022(01): 95-104 .
    22. 索永录,白愿. 多年冻土层下煤层开采覆岩破断规律研究. 煤炭技术. 2022(03): 5-9 .
    23. 郭瑞,张勇,陈庆港. 动静载荷下深部开挖巷道围岩变形破坏特征及支护优化. 煤炭技术. 2022(12): 81-85 .
    24. 任建慧. 综放工作面过上覆集中煤柱矿压显现规律及控制技术研究. 中国煤炭. 2022(S1): 248-257 .
    25. 贾林刚. 软岩近距离煤层采动覆岩破坏特征模拟研究. 矿山测量. 2021(03): 1-6 .
    26. 王桂利,孙文杰,赵猛,马志峰,巩思园. 深部临空巨厚坚硬顶板断裂矿震规律及成因研究. 能源与环保. 2021(10): 300-305 .

    Other cited types(35)

Catalog

    Article views (249) PDF downloads (139) Cited by(61)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return