• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Xin-xin, XU Yi. Hydraulic and solute transport coupling model for fractured rock mass with discrete fracture network using computational method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1164-1171. DOI: 10.11779/CJGE201906022
Citation: LI Xin-xin, XU Yi. Hydraulic and solute transport coupling model for fractured rock mass with discrete fracture network using computational method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1164-1171. DOI: 10.11779/CJGE201906022

Hydraulic and solute transport coupling model for fractured rock mass with discrete fracture network using computational method

More Information
  • Received Date: May 22, 2018
  • Published Date: June 24, 2019
  • The hydraulic and solute transport in fractured rock mass is of great importance for controlling the pollutant migration in groundwater. Based on the discrete fracture network model, a 3D computational method is proposed to investigate the coupling behavior of hydraulic and solute transport in fractured rock mass, with rock matrix modeled by solid elements and complex fracture networks represented by the zero-thickness elements. The proposed method is validated against the results from the refined modeling and analytical approach in the case of solute transport in a fracture-matrix system without and with reactions. It is further employed to simulate the mass transport process in fractured rock mass containing a large-scale fracture network, to predict the solute concentration distribution and to estimate the main influencing factors of the solute field. It is shown that the proposed numerical method is capable of capturing the water and solute movement in the fracture network and rock matrix. Due to the dominant flows in the percolated fracture network, the solute plume is greatly affected by convection of water flows in fractures, resulting in a highly heterogeneous distribution. With the aid of parametric sensitivity analysis, it is demonstrated that the convection effect attributable to fracture aperture is the main control factor affecting the solute field, compared with the diffusion effect caused by fracture matrix. On the premise of ensuring the calculation accuracy, the proposed method brings down the computational cost and also possesses an apparent advantage in settling down the three-dimensional computational solution for fractured rock mass containing a complex discrete fracture network.
  • [1]
    速宝玉, 张文捷, 盛金昌, 等. 渗流-化学溶解耦合作用下岩石单裂隙渗透特性研究[J]. 岩土力学, 2010, 31(11): 3361-3366.
    (SU Bao-yu, ZHANG Wen-jie, SHENG Jin-chang, et al.Study of permeability in single fracture under effects of coupled fluid flow and chemical dissolution[J]. Rock and Soil Mechanics, 2010, 31(11): 3361-3366. (in Chinese))
    [2]
    ZHU Y H, ZHAN H B, JIN M G.Analytical solutions of solute transport in a fracture-matrix system with different reaction rates for fracture and matrix[J]. Journal of Hydrology, 2016, 539: 447-456.
    [3]
    姚池, 姜清辉, 位伟, 等. 复杂裂隙岩体水-力耦合模型及溶质运移模拟[J]. 岩石力学与工程学报, 2013, 32(8): 1656-1665.
    (YAO Chi, JIANG Qing-hui, WEI Wei, et al.Numerical simulation of hydro-mechanical coupling and solute transport in complex fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1656-1665. (in Chinese))
    [4]
    王锦国, 周志芳. 裂隙岩体溶质运移模型研究[J]. 岩土力学, 2005, 26(2): 270-276.
    (WANG Jin-guo, ZHOU Zhi-fang.Study on model of solute transport in fractured rock mass[J]. Rock and Soil Mechanics, 2005, 26(2): 270-276. (in Chinese))
    [5]
    HADGU T, KARRA S, KALININA E, et al.A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock[J]. Journal of Hydrology, 2017, 553: 59-70.
    [6]
    HYMAN J D, KARRA S, MAKEDONSKA N, et al.dfnWorks: a discrete fracture network framework for modeling subsurface flow and transport[J]. Computers & Geosciences, 2015, 84: 10-19.
    [7]
    ZHOU R J, ZHAN H B, CHEN K W.Reactive solute transport in a filled single fracture-matrix system under unilateral and radial flows[J]. Advances in Water Resources, 2017, 104: 183-194.
    [8]
    董志高, 吴继敏, 黄勇. 二维裂隙网络溶质运移仿真模拟[J]. 岩土工程学报, 2008, 30(8): 1256-1260.
    (DONG Zhi-gao, WU Ji-min, HUANG Yong.Simulation of solute transport in two-dimensional fracture network[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1256-1260. (in Chinese))
    [9]
    NGO T D, FOURNO A, NOETINGER B.Modeling of transport processes through large-scale discrete fracture networks using conforming meshes and open-source software[J]. Journal of Hydrology, 2017, 554: 66-79.
    [10]
    霍吉祥, 宋汉周, 杜京浓, 等. 表面反应和扩散迁移联合控制的粗糙单裂隙渗流-溶解耦合模型[J]. 岩石力学与工程学报, 2015, 34(5): 1013-1021.
    (HUO Ji-xiang, SONG Han-zhou, DU Jing-nong, et al.Coupled fluid flow and chemical dissolution model based on surface reaction and mass transfer control in a rough fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 1013-1021. (in Chinese))
    [11]
    CHEN K W, ZHAN H B.A Green's function method for two-dimensional reactive solute transport in a parallel fracture-matrix system[J]. Journal of Contaminant Hydrology, 2018.
    [12]
    ZOU L, JING L, CVETKOVIC V.Assumptions of the analytical solution for solute transport in a fracture-matrix system[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 211-217.
    [13]
    TANG D H, FRIND E O, SUDICKY E A.Contaminant transport in fractured porous media: analytical solution for a single fracture[J]. Water Resources Research, 1981, 17(3): 555-564.
    [14]
    薛强, 梁冰, 刘建军. 裂隙岩体中污染物运移过程的数值模拟[J]. 岩土力学, 2003(增刊2): 35-38.
    (XUE Qiang, LIANG Bing, LIU Jian-jun.Numerical simulation of contaminant transport in jointed rock mass[J]. Rock and Soil Mechanics, 2003(S2): 35-38. (in Chinese))
    [15]
    THOVERT J F, MOURZENKO V V, ADLER P M.Percolation in three-dimensional fracture networks for arbitrary size and shape distributions[J]. Physical Review E, 2017, 95(4): 042112.
    [16]
    BERRONE S, PIERACCINI S, SCIALO S.On simulations of discrete fracture network flows with an optimization-based extended finite element method[J]. SIAM Journal on Scientific Computing, 2013, 35(2): A908-A935.
    [17]
    薛娈鸾. 裂隙岩体渗流-传热耦合的复合单元模型[J]. 岩土力学, 2016, 37(1): 263-268.
    (XUE Luan-luan.A composite element model for coupled seepage-heat transfer of fractured rock mass[J]. Rock and Soil Mechanics, 2016, 37(1): 263-268. (in Chinese))
    [18]
    钱鹏, 徐千军. 不同裂纹分布的孔隙材料渗透系数[J]. 工程力学, 2017, 34(12): 39-47.
    (QIAN Peng, XU Qian-jun.Permeability of porous material with different crack distributions[J]. Engineering Mechanics, 2017, 34(12): 39-47. (in Chinese))
    [19]
    陈必光, 宋二祥, 程晓辉. 二维裂隙岩体渗流传热的离散裂隙网络模型数值计算方法[J]. 岩石力学与工程学报, 2014, 33(1): 43-51.
    (CHEN Bi-guang, SONG Er-xiang, CHENG Xiao-hui.A numerical method for discrete fracture network model for flow and heat transfer in two-dimensional fractured rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 43-51. (in Chinese))
    [20]
    LI X X, CHEN S H, XU Q, et al.Modeling capillary water absorption in concrete with discrete crack network[J]. Journal of Materials in Civil Engineering, 2017, 30(1): 04017263.
    [21]
    LI X X, XU Y, CHEN S H.Computational homogenization of effective permeability in three-phase mesoscale concrete[J]. Construction and Building Materials, 2016, 121: 100-111.
    [22]
    梁越, 王俊杰, 刘明维. 基于流网单元的污染物优势运移数值模型[J]. 岩土力学, 2015, 36(10): 3007-3014.
    (LIANG Yue, WANG Jun-jie, LIU Ming-wei.Numerical model for contaminant preferential migration based on flow net element[J]. Rock and Soil Mechanics, 2015, 36(10): 3007-3014. (in Chinese))
    [23]
    NILENIUS F, LARSSON F, LUNDGREN K, et al.Computational homogenization of diffusion in three-phase mesoscale concrete[J]. Computational Mechanics, 2014, 54(2): 461-472.
  • Related Articles

    [1]Predictive model of solute transport processes in fractured rock based on geometric features[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240355
    [2]XIAO Wei-min, HUANG Wei, DING Mi, LI Zhi-jian. Method for preparing artificial columnar jointed rock mass specimens by using 3D printing technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 256-260. DOI: 10.11779/CJGE2018S2051
    [3]XIONG Chun-bao, LI Zhi, SUN Xuan, ZHAI Jing-sheng. Stability analysis of submarine pipelines based on 3D model reconstruction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 53-56. DOI: 10.11779/CJGE2017S2014
    [4]AI Zhi-yong, HU Ya-dong. Uncoupled analytical layer-element for 3D transversely isotropic multilayered foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 717-720.
    [5]ZHAO Yan-lin, WANG Wei-jun, WAN Wen, ZHAO Fu-jun, LI Shu-qing. Coupling mechanism of seepage-fracture in fractured rock mass and its application[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 677-685.
    [6]A model for unsaturated seepage flows in rock fracture and its calculation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [7]Coupling model of seepage-damage-fracture in fractured rock masses (extended flac3D model) and its appliance[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [8]CHEN Pingshan, FANG Yingguang, MO Haihong, ZHANG Gongxin, DONG Zhiliang. Analysis of 3D FEM for soft foundation improved by vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 564-570.
    [9]DONG Zhigao, WU Jimin, HUANG Yong. Simulation of solute transport in two-dimensional fracture network[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1256-1260.
    [10]ZHANG Yujun. Model of thermo-hydro-mechanical coupling for cracked rock mass and its 2D FEM analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 288-294.
  • Cited by

    Periodical cited type(12)

    1. 尹敬涵,崔臻,盛谦,孙鑫,张茂础. 基于节理张量的岩体等效弹性力学参数计算方法研究. 岩石力学与工程学报. 2025(01): 152-163 .
    2. 宁佳祺,冯子军,高祺. 裂隙-孔隙双重介质模型下的复杂裂隙岩体示踪传质特性. 科学技术与工程. 2025(07): 2904-2913 .
    3. 王展,闫亚景,赵贵章,丁力,刘少康,李文曦. 基于自然电位的裂隙-基质系统溶质运移试验研究. 华北水利水电大学学报(自然科学版). 2024(06): 97-108 .
    4. 薛松,杨志兵,陈益峰,童富果. 交叉裂隙开度对滴状水流分流行为的影响. 岩土工程学报. 2023(01): 181-188 . 本站查看
    5. 谢先斌. 湖北高烽磷矿副井白云岩裂隙渗流特性. 矿业工程研究. 2023(02): 9-14 .
    6. 张帅领,张春艳,江承阳,杨亚东. 矩形狭缝裂隙水流运动特征数值模拟研究. 地下水. 2023(05): 11-14+63 .
    7. 杨志兵,周泽雄,薛松,郑小康,叶雨柯. 裂隙介质非饱和渗流多尺度机理与数值模型研究进展. 武汉大学学报(工学版). 2023(12): 1472-1482 .
    8. 蒋中明,钟兵,万发. 水封石油洞库污染物运移规律研究. 岩土工程学报. 2023(12): 2529-2536 . 本站查看
    9. 李旭,苏世林,文章,许光泉. 变流速条件下非达西裂隙流溶质运移特征研究. 安全与环境工程. 2021(03): 1-6 .
    10. 黄娜,蒋宇静,程远方,刘日成. 基于3D打印技术的复杂三维粗糙裂隙网络渗流特性试验及数值模拟研究. 岩土力学. 2021(06): 1659-1668+1680 .
    11. 邵玉龙,姚池,漆宾宾,周创兵. 三维复杂裂隙岩体渗流传热耦合的数值研究. 地下空间与工程学报. 2021(04): 1063-1071 .
    12. 姜春露,汪根强,郑刘根,徐康,程桦. 基于自然电位的充填裂隙溶质运移特征试验研究. 工程科学与技术. 2020(04): 89-96 .

    Other cited types(22)

Catalog

    Article views (337) PDF downloads (234) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return