• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Zhongming, ZHONG Bing, WAN Fa. Migration laws of pollutants in surrounding rock of underground oil storage caverns[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2529-2536. DOI: 10.11779/CJGE20221211
Citation: JIANG Zhongming, ZHONG Bing, WAN Fa. Migration laws of pollutants in surrounding rock of underground oil storage caverns[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2529-2536. DOI: 10.11779/CJGE20221211

Migration laws of pollutants in surrounding rock of underground oil storage caverns

More Information
  • Received Date: October 07, 2022
  • Available Online: April 23, 2023
  • The groundwater near a cavern may be polluted during the operation period of oil storage. Understanding the migration laws of oil pollutants in fractured rock mass is the base of groundwater pollution prevention and control in reservoir areas. For the sake of revealing the migration laws of oil pollutants in surrounding rock of the caverns, the migration and diffusion processes of benzene are studied by using the numerical simulation method based on the fracture-pore dual-medium model. The effects of fracture inclination angle, fracture aperture, matrix permeability and longitudinal dispersivity on the migration of benzene are also analyzed. The research results show that the migration of benzene is limited in a small range after 50 years of oil storage in the caverns, and it does not go up to the water curtain system, nor access the water body near ground surface. Under the long-term operation of the caverns, the pollution halos of the adjacent caverns can connect with each other, which will lead to cross-contamination of oil pollutants in the adjacent caverns. The vertical pollution distance of benzene is sensitive to the longitudinal dispersivity and fracture inclination angle, but weakly sensitive to the fracture aperture and matrix permeability. The maximum concentration of benzene on the central axis of rock pillars between caverns is most sensitive to the fracture inclination angle, and it decreases with the increase of the fracture inclination angle and matrix permeability, but increases with the increase of the longitudinal dispersivity and fracture aperture.
  • [1]
    环境影响评价技术导则地下水环境: HJ 610—2016[S]. 北京: 中国环境科学出版社, 2016.

    Technical Guidelines for Environmental Impact Assessment―Groundwater Environment: HJ 610—2016[S]. Beijing: China Environmental Science Press, 2016. (in Chinese)
    [2]
    张彬, 李玉涛, 石磊, 等. 海岛环境下地下水封油库海水入侵数值模拟研究[J]. 工程地质学报, 2018, 26(5): 1366-1374. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805032.htm

    ZHANG Bin, LI Yutao, SHI Lei, et al. Numerical simulation of seawater intrusion in underground oil storage cavern in island environment[J]. Journal of Engineering Geology, 2018, 26(5): 1366-1374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805032.htm
    [3]
    乔丽苹, 王小倩, 王者超, 等. 某地下水封石油洞库海水入侵评价与控制方法研究[J]. 岩土工程学报, 2021, 43(7): 1338-1344. doi: 10.11779/CJGE202107020

    QIAO Liping, WANG Xiaoqian, WANG Zhechao, et al. Evaluation and control method of seawater intrusion in an underground water-sealing oil storage cavern[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1338-1344. (in Chinese) doi: 10.11779/CJGE202107020
    [4]
    黄安达. 花岗岩裂隙反应性溶质运移规律研究[D]. 济南: 山东大学, 2018.

    HUANG Anda. Reactive Solute Transport in Single Granitic Fractures[D]. Jinan: Shandong University, 2018. (in Chinese)
    [5]
    韩曼. 地下水封石油洞库渗流场及溶质运移模拟研究[D]. 青岛: 中国海洋大学, 2007.

    HAN Man. Research on Seepage and Solute Transport Simulation of Underground Petroleum Storage Caverns[D]. Qingdao: Ocean University of China, 2007. (in Chinese)
    [6]
    蒋中明, 肖喆臻, 唐栋, 等. 基于裂隙渗流效应的水封油库涌水量预测分析[J]. 岩土力学, 2022, 43(4): 1041-1047, 1082. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202204017.htm

    JIANG Zhongming, XIAO Zhezhen, TANG Dong, et al. Prediction of water inflow in water-sealed oil storage Caverns based on fracture seepage effect[J]. Rock and Soil Mechanics, 2022, 43(4): 1041-1047, 1082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202204017.htm
    [7]
    王者超, 张振杰, 李术才, 等. 基于离散裂隙网络法的地下石油洞库洞室间水封性评价[J]. 山东大学学报(工学版), 2016, 46(2): 94-100, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201602014.htm

    WANG Zhechao, ZHANG Zhenjie, LI Shucai, et al. Assessment of inter-cavern containment property for underground oil storage caverns using discrete fracture networks[J]. Journal of Shandong University (Engineering Science), 2016, 46(2): 94-100, 115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201602014.htm
    [8]
    温毓繁, 任旭华, 张海波, 等. 裂隙倾角对石油洞库水封效果的影响[J]. 水资源与水工程学报, 2014, 25(5): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201405015.htm

    WEN Yufan, REN Xuhua, ZHANG Haibo, et al. Impact of fissure inclination angle on water seal effect of petroleum storage cavern[J]. Journal of Water Resources and Water Engineering, 2014, 25(5): 69-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201405015.htm
    [9]
    王笑雨, 张可霓, 李毅. 裂隙岩体渗流及污染物迁移模型的数值模拟研究[J]. 北京师范大学学报(自然科学版), 2015, 51(5): 527-532. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201505017.htm

    WANG Xiaoyu, ZHANG Keni, LI Yi. Modeling fluid flow and tracer transport in fractured rock by the effective continuum method[J]. Journal of Beijing Normal University (Natural Science), 2015, 51(5): 527-532. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201505017.htm
    [10]
    李明, 张刘俊, 冯涛, 等. 污染场地地下水中砷的运移模拟研究[J]. 安全与环境工程, 2022, 29(2): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202202018.htm

    LI Ming, ZHANG Liujun, FENG Tao, et al. Simulation study on arsenic transport in groundwater of contaminated sites[J]. Safety and Environmental Engineering, 2022, 29(2): 141-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202202018.htm
    [11]
    姚池, 姜清辉, 位伟, 等. 复杂裂隙岩体水-力耦合模型及溶质运移模拟[J]. 岩石力学与工程学报, 2013, 32(8): 1656-1665. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308020.htm

    YAO Chi, JIANG Qinghui, WEI Wei, et al. Numerical simulation of hydro-mechanical coupling and solute transport in complex fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1656-1665. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308020.htm
    [12]
    魏亚强, 董艳辉, 周鹏鹏, 等. 基于离散裂隙网络模型的核素粒子迁移数值模拟研究[J]. 水文地质工程地质, 2017, 44(1): 123-130, 136. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201701022.htm

    WEI Yaqiang, DONG Yanhui, ZHOU Pengpeng, et al. Numerical simulation of radionuclide particle tracking based on discrete fracture network[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 123-130, 136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201701022.htm
    [13]
    李馨馨, 徐轶. 裂隙岩体渗流溶质运移耦合离散裂隙模型数值计算方法[J]. 岩土工程学报, 2019, 41(6): 1164-1171. doi: 10.11779/CJGE201906022

    LI Xinxin, XU Yi. Hydraulic and solute transport coupling model for fractured rock mass with discrete fracture network using computational method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1164-1171. (in Chinese) doi: 10.11779/CJGE201906022
    [14]
    张弛, 陈干, 吴剑锋, 等. 基于多点地质统计的二维裂隙网络溶质运移模拟[J]. 南京大学学报(自然科学), 2016, 52(3): 456-463. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201603006.htm

    ZHANG Chi, CHEN Gan, WU Jianfeng, et al. Two-dimensional simulation of solute transport in fractured media based on multiple-point geostatistics[J]. Journal of Nanjing University (Natural Sciences), 2016, 52(3): 456-463. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201603006.htm
    [15]
    薛强, 梁冰, 刘建军. 裂隙岩体中污染物运移过程的数值模拟[J]. 岩土力学, 2003, 24(增刊2): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2007.htm

    XUE Qiang, LIANG Bing, LIU Jianjun. Numerical simulation of contaminant transport in jointed rockmass[J]. Rock and Soil Mechanics, 2003, 24(S2): 35-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2007.htm
    [16]
    ZHU Y H, ZHAN H B, JIN M G. Analytical solutions of solute transport in a fracture-matrix system with different reaction rates for fracture and matrix[J]. Journal of Hydrology, 2016, 539: 447-456.
    [17]
    王者超, 李术才, 薛翊国, 等. 注取油循环荷载作用下地下水封油库运营性能评价[J]. 工程力学, 2013, 30(12): 167-175, 212. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201312026.htm

    WANG Zhechao, LI Shucai, XUE Yiguo, et al. Assessment of performance of an underground crude oil storage Caverns subjected to cyclic loading due to storage and extraction of crude oil in operation phase[J]. Engineering Mechanics, 2013, 30(12): 167-175, 212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201312026.htm
    [18]
    MIYABE K, ISOGAI R. Estimation of molecular diffusivity in liquid phase systems by the Wilke-Chang equation[J]. Journal of Chromatography A, 2011, 1218(38): 6639-6645.
    [19]
    石云峰, 李寻, 裴妙荣. 花岗岩单一裂隙中Na、Cu、U的迁移试验[J]. 核化学与放射化学, 2016, 38(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201602009.htm

    SHI Yunfeng, LI Xun, PEI Miaorong. Na, Cu, U transport in granite rock[J]. Journal of Nuclear and Radiochemistry, 2016, 38(2): 123-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201602009.htm
    [20]
    GELHAR L W, WELTY C, REHFELDT K R. A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research, 1992, 28(7): 1955-1974.
    [21]
    TRACY J C. A practical guide to groundwater and solute transport modeling[J]. Eos, Transactions American Geophysical Union, 1996, 77(44): 434.
    [22]
    王者超, 李术才, 梁建毅, 等. 地下水封石油洞库渗水量预测与统计[J]. 岩土工程学报, 2014, 36(8): 1490-1497. doi: 10.11779/CJGE201408015

    WANG Zhechao, LI Shucai, LIANG Jianyi, et al. Prediction and measurement of groundwater flow rate of underground crude oil storage Caverns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1490-1497. (in Chinese) doi: 10.11779/CJGE201408015
    [23]
    YANG H S, KANG J G, KIM K S, et al. Groundwater flow characterization in the vicinity of the underground Caverns in fractured rock masses by numerical modeling[J]. Geosciences Journal, 2004, 8(4): 401-413.
    [24]
    李卫明. 岩体裂隙对地下水封油库水封性能影响研究[D]. 北京: 中国地质大学(北京), 2015.

    LI Weiming. Study of Seal Properties in Underground Oil Storage Cavern Influnced by Rock Cracks[D]. Beijing: China University of Geosciences, 2015. (in Chinese)
    [25]
    GRISAK G E, PICKENS J F. Solute transport through fractured media: 1. The effect of matrix diffusion[J]. Water Resources Research, 1980, 16(4): 719-730.
    [26]
    席庆, 李兆富, 罗川. 基于扰动分析方法的AnnAGNPS模型水文水质参数敏感性分析[J]. 环境科学, 2014, 35(5): 1773-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201405021.htm

    XI Qing, LI Zhaofu, LUO Chuan. Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method[J]. Environmental Science, 2014, 35(5): 1773-1780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201405021.htm
  • Related Articles

    [1]WU Yang, WU Yihang, MA Linjian, CUI Jie, LIU Jiankun, DAI Beibing. Experimental study on dynamic characteristics of calcareous sand-gravel mixtures from islands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 63-71. DOI: 10.11779/CJGE20221161
    [2]Experimental Study on Quick Detection of Moisture Content of Wide-Graded Gravel Soil Based on Microwave Humidity Method and Weighted Method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240308
    [3]WU Ping, LING Xiaodong, SHI Beixiao, HE Ning. Experimental study on permeability characteristics of sandy gravel with high fines content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 44-49. DOI: 10.11779/CJGE2023S10028
    [4]LIU Feiyu, KONG Jianjie, YAO Jiamin. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. DOI: 10.11779/CJGE20220287
    [5]JI En-yue, CHEN Sheng-shui, ZHU Jun-gao, FU Zhong-zhi. Experimental research on tensile strength of gravelly soil under different gravel contents[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1339-1344. DOI: 10.11779/CJGE201907019
    [6]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
    [7]WU Qi, CHEN Guo-xing, ZHOU Zheng-long, HUANG Bo. Influences of fines content on cyclic resistance ratio of fines-sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1038-1047. DOI: 10.11779/CJGE201706009
    [8]YANG Ji-hong, DONG Jin-yu, HUANG Zhi-quan, ZHENG Zhu-guang, QI Dan. Large-scale direct shear tests on accumulation body with different stone contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 161-166. DOI: 10.11779/CJGE2016S2026
    [9]WANG Bing-hui, CHEN Guo-xing, SUN Tian, LI Xiao-jun. Liquefaction resistance of sand-gravel soils using small soil-box shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2094-2100. DOI: 10.11779/CJGE201511022
    [10]WANG Yuan-zhan, LIU Xu-fei, ZHANG Zhi-kai, MA Dian-guang, CUI Yan-qiang. Experimental research on influence of root content on strength of undisturbed and remolded grassroots-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1405-1410. DOI: 10.11779/CJGE201508007

Catalog

    Article views (294) PDF downloads (87) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return