• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Bing-nan, MA Jian-lin, WANG Meng-ting, LI Shu-nan, ZHOU He-xiang. Centrifugal model tests on sinking and seepage of a large deep-water open caisson[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2291-2300. DOI: 10.11779/CJGE202012016
Citation: JIANG Bing-nan, MA Jian-lin, WANG Meng-ting, LI Shu-nan, ZHOU He-xiang. Centrifugal model tests on sinking and seepage of a large deep-water open caisson[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2291-2300. DOI: 10.11779/CJGE202012016

Centrifugal model tests on sinking and seepage of a large deep-water open caisson

More Information
  • Received Date: September 22, 2019
  • Available Online: December 05, 2022
  • Based on a largest deep-water open caisson, the centrifuge model tests simulate the seepage field caused by mud suction during sinking when the caisson is buried more than 35 m deep. By comparing and analyzing the forces with the measured data from the prototype caisson, the main characteristics are as follows: the distribution of the lateral pressure is small at the step, the stress relaxes near the blade foot, and it concentrates in the upper and lower sections of the step, while it is more obvious below the step. When the lateral resistance during sinking is greater than the heightening, according to the distribution characteristics of lateral pressure, the method for calculating the side resistance in the vertical state of the caisson is given. The analysis also shows that the seepage effect caused by the mud suction will make the soil at the lower section of side wall become loose, and the lateral pressure is greatly reduced and negatively correlated with the seepage force. And may break the stress balance of the caisson and cause gushing sand and sudden sinking. When sinking, the extrusion of side wall will cause stress concentration and the increase of the excess pore water pressure. After sinking, the excess pore water pressure will dissipate rapidly along the drainage path, and vertical consolidation of soil on the sidewall occurs, and part of the stress concentration of soil caused by subsidence will slowly dissipate.
  • [1]
    NONVEILLER E. Open caissons for deep foundations[J]. Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, 1987, 113(5): 424-439. doi: 10.1061/(ASCE)0733-9410(1987)113:5(424)
    [2]
    TANIMOTO K, TAKAHASHI S. Design and construction of caisson breakwaters: the Japanese experience[J]. Coastal Engineering, 1994, 22(1/2): 57-77.
    [3]
    胡中波. 深大沉井基底土层承载特性研究[D]. 成都: 西南交通大学, 2016.

    HU Zhong-bo. Bearing Characteristics Research of the Soil Below Large-Sized Caisson[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [4]
    张凤祥. 沉井沉箱设计、施工及实例[M]. 北京: 中国建筑工业出版社, 2010.

    ZHANG Feng-xiang. Design, Construction and Examples of Caissons and Open Caissons[M]. Beijing: China Architecture and Building Press, 2010. (in Chinese)
    [5]
    LUKE A M, RAUCH A F, OLSON R E, et al. Components of suction caisson capacity measured in axial pullout tests[J]. Ocean Engineering, 2005, 32(7): 878-891. doi: 10.1016/j.oceaneng.2004.10.007
    [6]
    SAMUI P, DAS S, KIM D. Uplift capacity of suction caisson in clay using multivariate adaptive regression spline[J]. Ocean Engineering, 2011, 38(17): 2123-2127.
    [7]
    LIAN J, CHEN F, WANG H. Laboratory tests on soil-skirt interaction and penetration resistance of suction caissons during installation in sand[J]. Ocean Engineering, 2014, 84(3): 1-13.
    [8]
    YEA G G, KIM T H. Vertical cutting edge forces measured during the sinking of pneumatic caisson[J]. Marine Georesources & Geotechnology, 2012, 30(2): 103-121.
    [9]
    CHIOU J S, KO Y Y, HSU S Y, et al. Testing and analysis of a laterally loaded bridge caisson foundation in gravel[J]. Soils & Foundations, 2012, 52(3): 562-573.
    [10]
    GEROLYMOS N, GAZETAS G. Development of winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities[J]. Soil Dynamics & Earthquake Engineering, 2006, 26(5): 363-376.
    [11]
    ZHONG R, HUANG M S. Winkler model for dynamic response of composite caisson-piles foundations: seismic response[J]. Soil Dynamics and Earthquake Engineering, 2013, 55(13): 182-194.
    [12]
    ZAFEIRAKOS A, GEROLYMOS N, DROSOS V. Incremental dynamic analysis of caisson-pier interaction[J]. Soil Dynamics & Earthquake Engineering, 2013, 48(5): 71-88.
    [13]
    铁路桥涵地基和基础设计规范:TB 10093—2017[S]. 2017.

    Code for Design on Subsoil and Foundation of Railway Bridge and Culvert: TB 10093—2017[S]. 2017. (in Chinese)
    [14]
    建筑地基基础设计规范:GB 50007—2011[S]. 2012.

    Code for Design of Building Foundation: GB 50007—2011[S]. 2012. (in Chinese)
    [15]
    给水排水工程钢筋混凝土沉井结构设计规程:CECS 137: 2015[S]. 2015.

    Specification for Structural Design of Reinforced Concrete Sinking Well of Water Supply and Sewage Engineering: CECS 137: 2015[S]. 2015. (in Chinese)
    [16]
    陈晓平, 茜平一, 张志勇. 沉井基础下沉阻力分布特征研究[J]. 岩土工程学报, 2005, 27(2): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200502003.htm

    CHEN Xiao-ping, QIAN Ping-yi, ZHANG Zhi-yong. Study on penetration resistance distribution characteristic of sunk shaft foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 148-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200502003.htm
    [17]
    穆保岗, 朱建民, 牛亚洲. 南京长江四桥北锚碇沉井监控方案及成果分析[J]. 岩土工程学报, 2011, 33(2): 269-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201102019.htm

    MU Bao-gang, ZHU Jian-min, NIU Ya-zhou. Monitoring and analysis of north anchorage caisson of Fourth Nanjing Yangtze River Bridge[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 269-274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201102019.htm
    [18]
    朱建民, 龚维明, 穆保岗, 等. 南京长江四桥北锚碇沉井下沉安全监控研究[J]. 建筑结构学报, 2010, 31(8): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201008017.htm

    ZHU Jian-min, GONG Wei-ming, MU Bao-gang, et al. Sinking safety monitoring research on north anchorage caisson of the Forth Nanjing Yangtze River Bridge[J]. Journal of Building Structures, 2010, 31(8): 112-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201008017.htm
    [19]
    蒋炳楠, 马建林, 褚晶磊, 等. 水中超深大沉井施工期间侧压力现场监测研究[J]. 岩土力学, 2019, 40(4): 1551-1560. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904038.htm

    JIANG Bing-nan, MA Jian-lin, CHU Jing-lei, et al. On-site monitoring of lateral pressure of ultra-deep large and subaqueous open caisson during construction[J]. Rock and Soil Mechanics, 2019, 40(4): 1551-1560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904038.htm
    [20]
    王建, 刘杨, 张煜. 沉井侧壁摩阻力室内试验研究[J]. 岩土力学, 2013, 34(3): 659-666. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303008.htm

    WANG Jian, LIU Yang, ZHANG Yu. Model test on sidewall friction of open caisson[J]. Rock and Soil Mechanics, 2013, 34(3): 659-666. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303008.htm
    [21]
    李伟雄. 基于被动土压力的沉井结构分析[J]. 岩土工程学报, 2005, 27(11): 1341-1345. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200511022.htm

    LI Wei-xiong. Analysis of Structure of passive earth pressure on open caisson[J]. Chinese Jounal of Geotechnical Engineering, 2005, 27(11): 1341-1345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200511022.htm
    [22]
    周和祥, 马建林, 张凯, 等. 沉井下沉阻力离心模型试验研究[J]. 岩土力学, 2019, 40(10): 3969-3976. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910032.htm

    ZHOU He-xiang, MA Jian-lin, ZHANG Kai, et al. Study on sinking resistance of large and deep caisson based on centrifugal model test[J]. Rock and Soil Mechanics, 2019, 40(10): 3969-3976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910032.htm
    [23]
    周和祥, 马建林, 张凯, 等. 沉井侧壁摩阻力分布特性试验研究[J]. 桥梁建设, 2018, 48(5): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201805006.htm

    ZHOU He-xiang, MA Jian-lin, ZHANG Kai, et al. Experimental study on the distribution characteristics of friction resistance on sidewall of the caisson[J]. Bridge Construction, 2018, 48(5): 27-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201805006.htm
    [24]
    褚晶磊, 马建林, 蒋炳楠, 等. 水中沉井下沉期侧壁摩阻力分布试验研究[J]. 岩土工程学报, 2019, 41(4): 707-716. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904018.htm

    CHU Jing-lei, MA Jian-lin, JIANG Bing-nan, et al. Experimental study on side friction distribution of caissons during sinking in water[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 707-716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904018.htm
    [25]
    蒋炳楠, 马建林, 李孟豪, 等. 水中沉井下沉期间刃脚空间受力试验研究[J]. 岩土力学, 2019, 40(5): 1693-1703. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905009.htm

    JIANG Bing-nan, MA Jian-lin, LI Meng-hao, et al. Experiments on spatial stress of foot blade during caisson sinking in water[J]. Rock and Soil Mechanics, 2019, 40(5): 1693-1703. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905009.htm
    [26]
    蒋炳楠. 沪通大桥超深大沉井下沉阻力及突沉现场监测研究[D]. 成都: 西南交通大学, 2016.

    JIANG Bing-nan. Resistance and Suddenly Sinking Monitor Research of Deep and Large Open Caisson of Hutong Bridge[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [27]
    徐光明, 章为民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC603.011.htm

    XU Guang-ming, ZHANG Wei-min. Study on particle size effect and boundary effect in centrifugal model[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 80-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC603.011.htm
    [28]
    交通部第一公路总公司. 公路施工手册:桥涵[M]. 北京: 人民交通出版社, 2000.

    First Highway Corporation of the Ministry of Communications. Highway Construction Manual: Bridge and Culvert[M]. Beijing: China Communications Press, 2000. (in Chinese)
    [29]
    太沙基. 理论土力学[M]. 徐志英,译.北京: 地质出版社, 1960.
  • Related Articles

    [1]Experimental Study on the Influence of Formation Lateral Pressure Coefficient on the Mechanical Properties of Double-Layer Lining Structure in Shield Tunnel[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230909
    [2]DING Lu-qiang, HAN Zhong, ZOU Wei-lie, WAN Liang-long, KUANG Wen-zhuang. Modelling and calculating lateral pressure of expansive soil-EPS inclusion-retaining wall system[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1558-1564. DOI: 10.11779/CJGE202108022
    [3]LI Lian-xiang, HUANG Jia-jia, JI Xiang-kai. Lateral pressures on retaining wall of composite foundation in clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 89-92. DOI: 10.11779/CJGE2019S1023
    [4]JIANG Ming-jie, LU Xiao-ping, ZHU Jun-gao, JI En-yue, GUO Wan-li. Method for estimating at-rest lateral pressure coefficient of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 77-81. DOI: 10.11779/CJGE2018S2016
    [5]XU Guang-ming, REN Guo-feng, GU Xing-wen, CHEN Ai-zhong, LI Le-chen. Experimental study on lateral pile-soil pressure on passive part of pile groups in innovative sheet-pile wharf[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 502-511. DOI: 10.11779/CJGE201803014
    [6]YANG Hong-wei, XU Jiang, NIE Wen, PENG Shou-jian. Experimental study on creep of rocks under step loading of seepage pressure[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1613-1619. DOI: 10.11779/CJGE201509007
    [7]LI Guo-wei, HU Jian, LU Xiao-cen, ZHOU Yang. One-dimensional secondary consolidation coefficient and lateral pressure coefficient of overconsolidated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2198-2205.
    [8]TANG Shidong, Lv Jianchun, FU Zong. Solution to initial horizontal stress and lateral earth pressure coefficient at rest by flat dilatometer tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2144-2148.
    [9]LI Yuqi, ZHOU Jian, XIE Kanghe. Analysis of seepage induced by excavation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1259-1262.
    [10]Chen Zhong-ji. Time Dependent Lateral Pressures, Poisson's Ratio Measurement[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(3): 27-33.
  • Cited by

    Periodical cited type(5)

    1. 石云冈,徐霞飞,田鹏,李婷,钟卫,金宇轩. 复杂条件下深水沉井基础偏位数值模拟分析. 水利与建筑工程学报. 2024(01): 126-133+155 .
    2. 熊根,付栋康,朱斌,赖莹. 软黏土中吸力锚承载特性离心试验研究. 岩土力学. 2024(05): 1472-1480 .
    3. 林彦,王钊,姜伟,林庆伟,刘以政. 装配式钢箱混凝土组合沉井结构受力性能研究. 山东建筑大学学报. 2024(06): 30-37 .
    4. 林彦,刘以政,林庆伟,仲崇廷,宋健凯. 新型装配式钢箱混凝土组合沉井结构整体受力性能试验研究. 工业建筑. 2023(01): 201-206 .
    5. 施洲,钟美玲,周勇聪,李思阳,冯传宝. 桥梁大型沉井基础研究综述. 中国铁道科学. 2022(05): 11-22 .

    Other cited types(2)

Catalog

    Article views (203) PDF downloads (136) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return