• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Guang-ming, REN Guo-feng, GU Xing-wen, CHEN Ai-zhong, LI Le-chen. Experimental study on lateral pile-soil pressure on passive part of pile groups in innovative sheet-pile wharf[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 502-511. DOI: 10.11779/CJGE201803014
Citation: XU Guang-ming, REN Guo-feng, GU Xing-wen, CHEN Ai-zhong, LI Le-chen. Experimental study on lateral pile-soil pressure on passive part of pile groups in innovative sheet-pile wharf[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 502-511. DOI: 10.11779/CJGE201803014

Experimental study on lateral pile-soil pressure on passive part of pile groups in innovative sheet-pile wharf

More Information
  • Received Date: July 20, 2016
  • Published Date: March 24, 2018
  • The pile group of vertical cast-in-place piles with relief platform has been successfully introduced into innovative sheet-pile wharfs to withhold lateral load due to horizontal soil movement along with its front wall. The work mechanism of the piles is similar to that of stabilizing piles, but their pile-soil interaction degree is far below the limit state. In order to study the distribution of the lateral pile-soil pressure along pile for the formation of its design method, geotechnical centrifuge model tests of two schemes are conducted to simulate 200,000-tonnage sheet-pile wharfs with relief platform in fine sand. The pile-soil pressure distribution is obtained by measuring the earth pressures at its two sides. The characteristic is that the lateral pile-soil pressure is positive for the upper part, meaning the same direction to soil movement, and negative for the lower part. And the position of zero value of pile-soil pressure is below the mud line of harbor basin by about four times the pile diameter. By using the position of zero pile-soil pressure as the demarcation line, each pile can thus be divided into the upper passive part and the lower active part, as is done in stabilizing piles. In order to estimate the pile-soil pressure of pile's passive part, it is correlated with the Rankine active pressure by introducing an average breadth ratio on the passive part of pile. It is found that the breadth ratio of pile's passive part is about 3.0 for seaside piles, much bigger than that for the middle and landside piles. Therefore, the pile-soil pressure of pile's passive part can be taken to be 3 times the Rankine active pressure in the design of pile groups with relief platform.
  • [1]
    刘永绣. 板桩式岸壁结构的设计理论与方法[M]. 北京: 人民交通出版社股份有限公司, 2014: 1-20.
    (LIU Yong-xiu.Design theories and methods for sheet-pile bulkhead[M]. Beijing: China Communications Press Co., Ltd., 2014: 1-303. (in Chinese))
    [2]
    De BEER E E. Piles subjected to static lateral loads, State-of the Art Report[C]// Proc 9th ICSMFE. Tokyo, 1977: 1-14.
    [3]
    JTG D60—2015公路桥涵设计通用规范[S]. 北京: 2015.
    (JTG D60—2015 General specification for design of highway bridges and culverts[S]. 2015. (in Chinese))
    [4]
    POULOUS H G.Design of reinforcing piles to increase slope stability[J]. Canadian Geotechnical Journal, 1995, 32: 808-818.
    [5]
    李仁平. 软土地基中被动桩与土体的相互作用及其工程应用[D]. 杭州: 浙江大学, 2001.
    (LI Ren-ping.The behavior of passive pile against soil lateral movement and its applications[D]. Hangzhou: Zhejiang University, 2001. (in Chinese))
    [6]
    ITO T, MATSUI T.Methods to estimate lateral force acting on stabilizing piles[J]. Soil and Foundations, 1975, 15(4): 43-59.
    [7]
    MATSUI T, HONG W P, ITO M.Earth pressure on piles in a row due to lateral soil movements[J]. Soils and Foundations, 1982, 22(2): 71-81.
    [8]
    沈珠江. 桩的抗滑阻力和抗滑桩的极限设计[J]. 岩土工程学报, 1992, 14(1): 51-56.
    (SHEN Zhu-jiang.Lateral resistance of piles and limit design of stabilizing piles[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 51-56. (in Chinese))
    [9]
    BROMS B B.Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1964, 90(SM3): 123-156.
    [10]
    徐光明, 蔡正银, 曾友金, 等. 一种新型板桩码头结构的离心模拟[J]. 岩土力学, 2010, 31(增刊1): 48-52.
    (XU Guang-ming, CAI Zheng-yin, ZENG You-jin, et al.Centrifuge modeling for an innovative sheet-pile bulkhead of diaphragm[J]. Rock and Soil Mechanics, 2010, 31(S1): 48-52. (in Chinese))
    [11]
    徐光明, 李士林. 板桩码头中群桩基础联接型式的试验研究[J]. 岩石力学与工程学报, 2016(增刊1): 3365-3371.
    (XU Guang-ming, LI Shi-lin.Experimental study of head fixity conditions of pile group in sheet-pile bulkhead[J]. Chinese Journal of Rock Mechanics and Engineering, 2016(S1): 3365-3371. (in Chinese))
    [12]
    徐光明, 刘阳, 任国峰, 等. 20万吨级卸荷式板桩码头离心模型试验研究[J]. 岩土工程学报, 2018, 40(1): 46-53.
    (XU Guang-ming, LIU Yang, REN Guo-feng, et al.Centrifuge modeling of 200,000 tonnage sheet-pile wharfs with relief platform[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 46-53. (in Chinese))
    [13]
    徐光明, 陈爱忠, 曾友金, 等. 超重力场中界面土压力的测量[J]. 岩土力学, 2007, 28(12): 2671-2674.
    (XU Guang-ming, CHEN Ai-zhong, ZENG You-jin, et al.Measurement of boundary total stress in a multi-gravity environment[J]. Rock and Soil Mechanics, 2007, 28(12): 2671-2674. (in Chinese))
    [14]
    TSINKER G P.Handbook of port and harbor engineering:geotechnical and structural aspects[M]. Springer US:ITP International Thomson Publishing,Chapman and Hall Press,1997: 397-508.
    [15]
    钱家欢. 土力学[M]. 南京: 河海大学出版社, 1988: 129-162.
    (QIAN Jia-huan.Soil mechanics[M]. Nanjing: Hohai University Press, 1988: 129-162. (in Chinese))
    [16]
    徐光明, 李士林, 刘永绣, 等. 板桩码头结构中桩体作用宽度试验研究[J]. 长江科学院院报, 2012, 29(1): 85-90.
    (XU Guang-ming, LI Shi-lin, LIU Yong-xiu, et al.Experimental investigation of equivalent breadth of pile in sheet-pile bulkhead[J]. Journal of Yangtze River Scientific Institute, 2012, 29(1): 85-90. (in Chinese))
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return