• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Ling, XU Ze-yu, ZHAO Ming-hua. Experimental research on behaviors of geogrid-encased stone column-improved composite foundation under cyclic loads[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2198-2205. DOI: 10.11779/CJGE202012005
Citation: ZHANG Ling, XU Ze-yu, ZHAO Ming-hua. Experimental research on behaviors of geogrid-encased stone column-improved composite foundation under cyclic loads[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2198-2205. DOI: 10.11779/CJGE202012005

Experimental research on behaviors of geogrid-encased stone column-improved composite foundation under cyclic loads

More Information
  • Received Date: March 08, 2020
  • Available Online: December 05, 2022
  • To study the behaviors of geosynthetic-encased stone column-improved composite foundation under traffic loads, a series of laboratory tests on composite foundation reinforced by single geosynthetic-encased stone column subjected to cyclic loads are conducted. The composite foundation is instrumented to monitor the stress distribution between piles and soils, accumulated settlement, excess pore water pressure and column bulging deformation. The influences of the reinforcement configuration, tensile strength of geogrid encasement and thickness of sand bed on the cyclic behaviors of the composite foundation are investigated. The test results indicate that the pile-soil stress distribution is stiffness-dependent, and the vertical reinforced encasement improves the plie stiffness. The horizontal reinforced geogrid can further increase the loads to pile top, while the sand bed increases the loads to transfer to the surrounding soils. The accumulated settlement reduces with the increase of the tensile modulus of geosynthetic-encasement. Based on the settlement control, the geogrid with high tensile modulus should be selected as the geosynthetic encasement. The accumulation of pore water pressure in the composite foundation increases with the increase of the stress in the surrounding soils. The bulging deformation depends on the vertical loads on piles and the tensile modulus of the geosynthetic encasement.
  • [1]
    赵明华, 顾美湘, 张玲, 等. 竖向土工加筋体对碎石桩承载变形影响的模型试验研究[J]. 岩土工程学报, 2014, 36(9): 1587-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409006.htm

    ZHAO Ming-hua, GU Mei-xiang, ZHANG Ling, et al. Model tests on influence of vertical geosynthetic-encasement on performance of stone columns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1587-1593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409006.htm
    [2]
    陈建峰, 梅森, 冯守中. 双向土工格栅加筋碎石桩单轴压缩试验[J]. 工程地质学报, 2019, 27(2): 311-316. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902011.htm

    CHEN Jian-feng, MEI Sen, FENG Shou-zhong. Uniaxial compression tests of biaxial geogrid-encased stone columns[J]. Journal of Engineering Geology, 2019, 27(2): 311-316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902011.htm
    [3]
    陈建峰, 王兴涛, 曾岳, 等. 土工织物散体桩桩体大三轴试验研究[J]. 岩土工程学报, 2017, 39(12): 2212-2218. doi: 10.11779/CJGE201712009

    CHEN Jian-feng, WANG Xing-tao, ZENG Yue, et al. Study on large triaxial compression tests of geosynthetic-encased stone column body[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2212-2118. (in Chinese) doi: 10.11779/CJGE201712009
    [4]
    WU C S, HONG Y S. Laboratory tests on geosynthetic- encapsulated sand columns[J]. Geotextiles and Geomembranes, 2009, 27(2): 107-120. doi: 10.1016/j.geotexmem.2008.09.003
    [5]
    MIRANDA M, COSTA A D. Laboratory analysis of encased stone columns[J]. Geotextiles and Geomembranes, 2016, 44(3): 269-277. doi: 10.1016/j.geotexmem.2015.12.001
    [6]
    OU YANG F, ZHANG J J, LIAO W M, et al. Characteristics of the stress and deformation of geosynthetic-encased stone column composite ground based on large-scale model tests[J]. Geosynthetics International, 2016, 24(3): 1-13.
    [7]
    MIRANDA M, DA COSTA A, CASTRO J, et al. Influence of geotextile encasement on the behaviour of stone columns: Laboratory study[J]. Geotextiles and Geomembranes, 2017, 45(1): 14-22. doi: 10.1016/j.geotexmem.2016.08.004
    [8]
    GHAZAVI M, AFSHAR J N. Bearing capacity of geosynthetic encased stone columns[J]. Geotextiles and Geomembranes, 2013, 38(38): 26-36.
    [9]
    ALI K, SHAHU J T, SHARMA K G. Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement[J]. Geosynthetics International, 2014, 21(2): 103-118. doi: 10.1680/gein.14.00002
    [10]
    陈建峰, 王波, 魏静, 等. 加筋碎石桩复合地基路堤模型试验[J]. 中国公路学报, 2015, 28(9): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201509002.htm

    CHEN Jian-feng, WANG Bo, WEI Jing, et al. Model test of embankment on composite foundation reinforced with geosynthetic-encased stone columns[J]. China Journal of Highway and Transport, 2015, 28(9): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201509002.htm
    [11]
    白顺果, 侯永峰, 张鸿儒. 循环荷载作用下水泥土桩复合地基变形性状分析[J]. 岩土力学, 2006, 27(4): 677-681. doi: 10.3969/j.issn.1000-7598.2006.04.035

    BAI Shun-guo, HOU Yong-feng, ZHANG Hong-ru. Deformation analysis of composite foundation improved by cement-soil piles under cycle loading[J]. Rock and Soil Mechanics, 2006, 27(4): 677-681. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.04.035
    [12]
    刘杰, 肖佳兴, 何杰. 循环荷载下圆柱形桩与楔形桩复合地基工作性状对比试验研究[J]. 岩土力学, 2014, 35(3): 631-636. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403003.htm

    LIU Jie, XIAO Jia-xing, HE Jie. Comparison experimental research on work behavior of composite foundation with column and tapered piles under cyclic loadings[J]. Rock and Soil Mechanics, 2014, 35(3): 631-636. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403003.htm
    [13]
    杨龙才, 郭庆海, 周顺华, 等. 高速铁路桥桩在轴向循环荷载长期作用下的荷载和变形特性试验研究[J]. 岩石力学与工程学报, 2005, 24(13): 2362-2368. doi: 10.3321/j.issn:1000-6915.2005.13.027

    YANG Long-cai, GUO Qing-hai, ZHOU Shun-hua, et al. Dynamic behaviors of pile foundation of high-speed railway bridge under long-term cyclic loading in soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2362-2368. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.13.027
    [14]
    朱斌, 任宇, 陈仁朋, 等. 竖向下压循环荷载作用下单桩承载力及累计沉降特性模型试验研究[J]. 岩土工程学报, 2009, 31(2): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200902011.htm

    ZHU Bin, REN Yu, CHEN Ren-peng, et al. Model test on bearing capacity and accumulated settlement of single pile subjected to axial cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 186-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200902011.htm
    [15]
    陈仁朋, 任宇, 陈云敏. 刚性单桩竖向循环加载模型试验研究[J]. 岩土工程学报, 2011, 33(12): 1926-1933. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112019.htm

    CHEN Ren-peng, REN Yu, CHEN Yun-min. Experimental investigation on single stiff pile with long-term axial dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1926-1933. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112019.htm
    [16]
    邓国栋, 张家生, 王启云, 等. 高速铁路粗粒土填料动力参数试验研究[J]. 铁道科学与工程学报, 2014, 11(2): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201402014.htm

    DENG Guo-dong, ZHANG Jia-sheng, WANG Qi-yun, et al. Experimental research on dynamic parameters of high-speed railway coarse-grained padding[J]. Journal of Railway Science and Engineering, 2014, 11(2): 76-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201402014.htm
    [17]
    张孟喜, 林青松, 刘飞禹. 循环荷载作用下土工格栅拉伸试验研究[J]. 岩土力学, 2010, 31(7): 2024-2029. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201007003.htm

    ZHANG Meng-xi, LIN Qing-song, LIU Fei-yu. Tensile experiments of geogrids under cyclic loading[J]. Rock and Soil Mechanics, 2010, 31(7): 2024-2029. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201007003.htm
    [18]
    彭雄志, 赵善锐, 罗书, 等. 高速铁路桥梁基础单桩动力模型试验研究[J]. 岩土工程学报, 2002, 24(2): 218-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200202020.htm

    PENG Xiong-zhi, ZHAO Shan-rui, LUO Shu, et al. Dynamic model tests on pile foundation of high-speed railway bridge[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 218-221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200202020.htm
    [19]
    MURUGESAN S, RAJAGOPAL K. Model tests on geosynthetic-encased stone columns[J]. Geosynthetics International, 2007, 14(6): 346-354.
    [20]
    DEBNATH P, DEY A K. Bearing capacity of geogrid reinforced sand over encased stone columns in soft clay[J]. Geotextiles and Geomembranes, 2017, 45(6): 653-664.
  • Related Articles

    [1]HUANG Xiaohu, WEI Zhaoheng, YI Wu, GUO Fei, HUANG Haifeng, XIAO Yuhuang. Mechanism of fracture preferential flow infiltration-induced shallow damage of colluvial landslides[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1136-1145. DOI: 10.11779/CJGE20230090
    [2]ZHANG Zhao, ZHU Liangyu, LI Guangyao, YUAN Haoyu, GAO Shuaidong, HAN Huaqiang, LIU Fengyin, QI Jilin. Analytical model for preferential infiltration into cracks in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1831-1840. DOI: 10.11779/CJGE20220856
    [3]KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463
    [4]ZHANG Peng-wei, ZHOU Yang-xin, GAO Wen-zhe, LIU Bao-guo. Multiphase flow computational model for extraction of gas hydrates in marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 80-84. DOI: 10.11779/CJGE2022S1015
    [5]ZHAO Kuan-yao, XU Qiang, LIU Fang-zhou, ZHANG Xian-lin. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 941-950. DOI: 10.11779/CJGE202005017
    [6]ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. DOI: 10.11779/CJGE202001005
    [7]ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316-1321. DOI: 10.11779/CJGE201807019
    [8]KE Han, WU Xiao-wen, ZHANG Jun, CHEN Yun-min, HU-Jie. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. DOI: 10.11779/CJGE201611004
    [9]NIU Guan-yi, CAO Yuan, WANG Tie-liang. Deduction of in-situ gas permeability test equation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1705-1709. DOI: 10.11779/CJGE201509020
    [10]SUN Dongmei, ZHU Yueming, ZHANG Mingjin. Study on numerical model for water-air two-phase flow in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 560-565.

Catalog

    Article views (298) PDF downloads (160) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return