• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Min, GAO Yu-feng, HE Jia, LIU Yang. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. DOI: 10.11779/CJGE202010017
Citation: WU Min, GAO Yu-feng, HE Jia, LIU Yang. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. DOI: 10.11779/CJGE202010017

Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion

More Information
  • Received Date: January 14, 2020
  • Available Online: December 07, 2022
  • The technology of soybean urease-induced calcium carbonate precipitation (SICP) is a new environmentally-friendly soil improvement technology. Xanthan gum can also be used as a soil cementation material. This study combines the technology of soybean urease-induced calcium carbonate precipitation and xanthan gum to optimize the former. It is found that the xanthan gum can further improve the surface strength of SCIP-improved sand. The surface strength increases with the increase of the concentration of soybean urease and xanthan gum. The wind erosion tests are carried out on the sand samples with different treatment levels using pure wind and wind mixed with solid particles. The samples treated only by SICP technology have relatively strong resistance to wind sand erosion. The addition of xanthan gum further improves their resistance by showing a lower erosion rate of the samples. In addition, the results indicate that in the wind erosion tests, the presence of solid particles have a strong erosion effect on the deterioration of the sand surface. The erosion rate (mass loss %) of the samples with the lowest strength is only 3.8% under the wind of 15 m/s and 1 h in the tests with pure wind, while under the same condition, the erosion rate is 66.7% in the tests using wind mixed solid particles. It is also found that there is a strong positive correlation between the wind erosion resistance and the surface strength of the treated soil. The microstructure of the treated sand samples is investigated by the SEM. It is observed that the cementation between the calcium carbonate and the soil particles becomes stronger due to the binding and the hardening effects of the xanthan gum.
  • [1]
    王涛, 朱震达. 中国沙漠化研究的若干问题——1.沙漠化的概念及其内涵[J]. 中国沙漠, 2003(3): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200303001.htm

    WANG Tao, ZHU Zhen-da. Some problems in the study of desertification in China——1. The concept and connotation of desertification[J]. Journal of Desert Research, 2003(3): 3-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200303001.htm
    [2]
    国家林业局. 中国荒漠化和沙化状况公报[R]. 国家林业局, 2015.

    State Forestry Administration. A Bulletin of Status quo of Desertification and Sandification in China[R]. State Forestry Administration, 2015. (in Chinese)
    [3]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
    [4]
    DE MUYNCK W, DE BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials: a review[J]. Ecological Engineering, 2010, 36(2): 118-136. doi: 10.1016/j.ecoleng.2009.02.006
    [5]
    HAMDAN N, KAVAZANJIAN E J. Enzyme-induced carbonate mineral precipitation for fugitive dust control[J]. Géotechnique, 2016, 66(7): 1-10.
    [6]
    HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117. doi: 10.1016/j.ecoleng.2009.01.004
    [7]
    PUTRA H, YASUHARA H, KINOSHITA N, et al. Effect of magnesium as substitute material in enzyme-mediated calcite precipitation for soil-improvement technique[J]. Frontiers in Bioengineering and Biotechnology, 2016, 4: 37.
    [8]
    PARK S S, CHOI S G, NAM I H. Effect of plant-induced calcite precipitation on the strength of sand[J]. Journal of Materials in Civil Engineering, 2014, 26(8): 06014017. doi: 10.1061/(ASCE)MT.1943-5533.0001029
    [9]
    KHAN M N H, AMARAKOON G G N N. Coral sand solidification test based on microbially induced carbonate precipitation using ureolytic bacteria[J]. Materials Transactions, 2015, 56(10): 1725-1732. doi: 10.2320/matertrans.M-M2015820
    [10]
    DAS N, KAYASTHA A M, SRIVASTAVA P K. Purification and characterization of urease from dehusked pigeonpea (Cajanus cajan L) seeds[J]. Phytochemistry, 2002, 61(5): 513-521. doi: 10.1016/S0031-9422(02)00270-4
    [11]
    GAO Y F, HE J, TANG X Y, et al. Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil[J]. Soils and Foundations, 2019, 59(5): 1631-1637. doi: 10.1016/j.sandf.2019.03.014
    [12]
    周盛华, 黄龙, 张洪斌. 黄原胶结构、性能及其应用的研究[J]. 食品科技, 2008(7): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ200807059.htm

    ZHOU Sheng-hua, HUANG Long, ZHANG Hong-bin. Development on the structure, property and application of xanthan gum[J]. Food Science and Technology, 2008(7): 156-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ200807059.htm
    [13]
    LEE S, CHANG I, CHUNG M K, et al. Geotechnical shear behavior of Xanthan gum biopolymer treated sand from direct shear testing[J]. Geomechanics and Engineering, 2017, 12(5): 831-847. doi: 10.12989/gae.2017.12.5.831
    [14]
    TUCKER K S, TRAN T, WANG X R, et al. Surficial soil stabilization against water-Induced erosion using polymer-modified microbially induced carbonate precipitation[J]. Journal of Materials in Civil Engineering, 2018, 30(10): 04018267. doi: 10.1061/(ASCE)MT.1943-5533.0002490
    [15]
    HAMDAN N, ZHAO Z, MUJICA M, et al. Hydrogel-assisted enzyme-induced carbonate mineral precipitation[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016089. doi: 10.1061/(ASCE)MT.1943-5533.0001604
    [16]
    CHEN R, LEE I, ZHANG L. Biopolymer stabilization of mine tailings for dust control[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 141(2): 04014100.
    [17]
    WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth West Australia: Morduch University, 2004.
    [18]
    水质钙的测定EDTA滴定法:GB/T 7476—1987[S]. 1987.

    Water Quality—Determination of Calcium—EDTA Titrimetric Method: GB/T 7476—1987[S]. 1987. (in Chinese)
    [19]
    王礼先, 朱金兆. 水土保持学[M]. 2版.北京: 中国林业出版社, 2005.

    WANG Li-xian, ZHU Jin-zhao. Soil and Water Conservation[M]. 2nd ed. Beijing: China Forestry Publishing House, 2005. (in Chinese)
    [20]
    张春来, 宋长青, 王振亭, 等. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201801004.htm

    ZHANG Chun-lai, SONG Chang-qing, WANG Zhen-ting, et al. Review and prospect of the study on soil wind erosion process[J]. Advances in Earth Science, 2018, 33(1): 27-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201801004.htm
    [21]
    程旭. 风沙两相流中沙粒起动规律的实验研究[D]. 北京: 清华大学, 2003.

    CHENG Xu. Experimental Research on Sand Incipience Law in Wind-Blown-Sand Two Phase Flow[D]. Beijing: Tsinghua University, 2003. (in Chinese)
  • Cited by

    Periodical cited type(25)

    1. 童小东,陈文义,慈祥,孙任运,黎冰. 生物高分子聚合物固化沙漠砂室内试验研究. 工程力学. 2025(03): 68-76 .
    2. 王钰轲,陈浩,宋迎宾,王振海,钟燕辉,张蓓. 大豆脲酶诱导碳酸钙固化黄河泥沙水稳定性试验研究. 水利学报. 2024(01): 71-79 .
    3. 亓永帅,高玉峰,何稼,周云东,严柏杨. 可溶性大豆多糖对大豆脲酶诱导碳酸钙沉积固化风积沙效果的影响研究. 岩土工程学报. 2024(04): 823-832 . 本站查看
    4. 倪静,韩晓婷,贺青青,耿雪玉. 黄原胶-粉煤灰联合处理酸污染土试验研究. 长江科学院院报. 2024(04): 111-118 .
    5. 王欢,张佳伟,郭合家. EICP改良膨胀土的物理力学性质试验研究. 土木与环境工程学报(中英文). 2024(05): 109-116 .
    6. 董旭光,方礼鑫,马渊博,胡倩倩,李瑞瑞. 大豆脲酶诱导碳酸钙固化黄土的强度试验研究. 地震工程学报. 2024(05): 1009-1020 .
    7. 褚文杰,李驰,武慧敏,高瑜. 土豆脲酶提取及基于酶诱导碳酸钙沉淀技术对风积沙改良的方法. 土木与环境工程学报(中英文). 2023(02): 74-80 .
    8. 吕家栋,赵立财. 黄原胶改善黏土断裂性能研究. 人民长江. 2023(04): 205-210+217 .
    9. 任廷婕,袁立敏,高永,王春颖,徐艳艳. 环保型固沙材料的研究进展. 中国沙漠. 2023(03): 160-168 .
    10. 张建伟,李想,石磊,尹悦. 废弃口罩对EICP固化砂土力学特性的影响. 河南大学学报(自然科学版). 2023(03): 359-366 .
    11. 陆爱灵,朱东云,张宏,曹函,张婧. EICP联合生物炭固化修复重金属污染土试验. 环境工程. 2023(08): 176-180 .
    12. 袁嘉茂,高永,李婉娇,任怀新,吴振亮. 生物诱导碳酸钙土体固化技术在防沙领域研究进展. 广东水利水电. 2023(09): 75-80 .
    13. 王灏喆,武钢义,代育恒,黄灿,常少华. 基于响应面法的EICP-PVA固化粉砂土优化试验研究. 公路. 2023(11): 264-272 .
    14. 赵轩,刘光宇,胡天林,赵璧,吕刚锋. EICP固化砂土强度特性试验研究. 水利与建筑工程学报. 2023(06): 114-121 .
    15. 刘津江,王淼,樊敏,刘西周. 产脲酶微生物的筛选和应用研究进展. 生物技术. 2022(01): 107-113+119 .
    16. 徐银龙,郑文杰,王琳,薛中飞,谢毅鑫. 壳聚糖联合酶诱导碳酸盐沉淀处理铜废水的劣化现象和强化机理研究. 化工学报. 2022(05): 2222-2232 .
    17. 曹光辉,刘士雨,蔡燕燕,俞缙,孙志龙. 靶向激活产脲酶微生物联合酶诱导碳酸盐沉淀加固陆域吹填海砂试验研究. 岩土力学. 2022(08): 2241-2252 .
    18. 郑文杰,胡文乐,袁可,文少杰. 脲酶矿化作用机制及其提升仿古黏土砖瓦阻水性能研究. 岩土力学. 2022(S2): 255-264 .
    19. 范广才,缪林昌,孙潇昊,王恒星,吴林玉. 脲酶抑制剂对EICP防风固沙效果的影响研究. 防灾减灾工程学报. 2022(05): 1019-1027 .
    20. 原华,刘帅星,刘康. EICP联合Na-Mt固化粉砂抗剪特性. 中国科技论文. 2022(12): 1358-1362+1375 .
    21. 王磊,王博,刘志强,常新昊. 基于脲酶诱导碳酸钙沉淀的土体固化研究进展. 工业建筑. 2022(11): 57-66 .
    22. 原华,刘康,原耀楠,冯佳星. 大豆脲酶诱导碳酸钙沉淀的多因素影响分析. 人工晶体学报. 2021(02): 375-380 .
    23. 何想,刘汉龙,韩飞,马国梁,赵常,楚剑,肖杨. 微生物矿化沉积时空演化的微流控芯片试验研究. 岩土工程学报. 2021(10): 1861-1869 . 本站查看
    24. 曹光辉,刘士雨,俞缙,蔡燕燕,胡洲,毛坤海. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用. 高校地质学报. 2021(06): 754-768 .
    25. 何稼,吴敏,孟浩,亓永帅,高玉峰. 生物固土用于防风固沙的研究进展. 高校地质学报. 2021(06): 687-696 .

    Other cited types(23)

Catalog

    Article views (415) PDF downloads (201) Cited by(48)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return