Citation: | HE Xiang, LIU Han-long, HAN Fei, MA Guo-liang, ZHAO Chang, CHU Jian, XIAO Yang. Spatiotemporal evolution of microbial-induced calcium carbonate precipitation based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1861-1869. DOI: 10.11779/CJGE202110012 |
[1] |
SIGEL A, SIGEL H, SIGEL RKO. Biomineralization: From Nature to Application[M]. Chichester: John Wiley & Sons Ltd, 2008.
|
[2] |
TANG C-S, YIN L-Y, JIANG N-J, et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review[J]. Environmental Earth Sciences, 2020, 79(5): 24.
|
[3] |
JROUNDI F, SCHIRO M, RUIZ-AGUDO E, et al. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities[J]. Nature Communications, 2017, 8(1): 279. doi: 10.1038/s41467-017-00372-3
|
[4] |
QIAN C X, REN L F, XUE B, et al. Bio-mineralization on cement-based materials consuming CO2 from atmosphere[J]. Construction and Building Materials, 2016, 106: 126-132. doi: 10.1016/j.conbuildmat.2015.10.105
|
[5] |
谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm
XIE Yue-han, TANG Chao-sheng, YIN Li-yang, et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)- treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm
|
[6] |
方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm
FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm
|
[7] |
ACHAL V, PAN X, LEE D J, et al. Remediation of Cr(VI) from chromium slag by biocementation[J]. Chemosphere, 2013, 93(7): 1352-1358. doi: 10.1016/j.chemosphere.2013.08.008
|
[8] |
LI M, CHENG X, GUO H, et al. Biomineralization of carbonate by terrabacter tumescens for heavy metal removal and biogrouting applications[J]. Journal of Environmental Engineering, 2016, 142(9): C4015005. doi: 10.1061/(ASCE)EE.1943-7870.0000970
|
[9] |
ZHANG W, JU Y, ZONG Y, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science & Technology, 2018, 52(16): 9266-9276.
|
[10] |
HARRIS D, UMMADI J G, THURBER A R, et al. Real-time monitoring of calcification process by Sporosarcina pasteurii biofilm[J]. The Analyst, 2016, 141(10): 2887-2895. doi: 10.1039/C6AN00007J
|
[11] |
ZAMBARE N, LAUCHNOR E G, GERLACH R. Controlling the distribution of microbially precipitated calcium carbonate in radial flow environments[J]. Environmental Science & Technology, 2019, 53(10): 5916-5925.
|
[12] |
WANG Y, SOGA K, DEJONG J T, et al. Microscale visualization of microbial-induced calcium carbonate precipitation processes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019045. doi: 10.1061/(ASCE)GT.1943-5606.0002079
|
[13] |
XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
|
[14] |
DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
|
[15] |
CHU J, IVANOV V, STABNIKOV V, et al. Microbial method for construction of an aquaculture pond in sand[J]. Géotechnique, 2013, 63(10): 871-875. doi: 10.1680/geot.SIP13.P.007
|
[16] |
李贤, 汪时机, 何丙辉, 等. 土体适用micp技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956-2964, 2974. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm
LI Xian, WANG Shi-ji, HE Bing-hui, et al. Permeability condition of soil suitable for MICP method[J]. Rock and Soil Mechanics, 2020, 40(8): 2956-2964, 2974. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm
|
[17] |
XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
|
[18] |
李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm
LI Chi, WANG Shuo, WANG Yan-xing, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm
|
[19] |
谈叶飞, 郭张军, 陈鸿杰, 等. 微生物追踪固结技术在堤防防渗中的应用[J]. 河海大学学报(自然科学版), 2018, 46(6): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201806009.htm
TAN Ye-fei, GUO Zhang-jun, CHEN Hong-jie, et al. Study on application of microbial tracing consolidation technology in the seepage prevention of earth bank[J]. Journal of Hohai University (Natural Sciences), 2018, 46(6): 521-526. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201806009.htm
|
[20] |
刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm
LIU Han-long, MA Guo-liang, XIAO Yang, et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Chinese Ground Improvement, 2019, 1(1): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm
|
[21] |
彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm
PENG Jie, WEN Zhi-li, LIU Zhi-ming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733-740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm
|
[22] |
欧孝夺, 莫鹏, 江杰, 等. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm
OU Xiao-duo, MO Peng, JIANG jie, et al. Experimental study on solidification of bauxite tailing clay with quicklime and microorganism[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 624-631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm
|
[23] |
桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm
GUI Yue, WU Cheng-kun, LIU Ying-shen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm
|
[24] |
黄涛, 方祥位, 张伟, 等. 活性氧化镁-微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306, 3316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010015.htm
HUANG Tao, FANG Xiang-wei, ZHANG Wei, et al. Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2020, 41(10): 3300-3306, 3316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010015.htm
|
[25] |
马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2020, 43(2): 290-299. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102011.htm
MA Guo-liang, HE Xiang, LU Hua-ming, et al. Strength of biocemented coarse sand with kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2020, 43(2): 290-299. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102011.htm
|
[26] |
刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
|
[27] |
吴敏, 高玉峰, 何稼, 等. 大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J]. 岩土工程学报, 2020, 42(10): 1914-1921. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010023.htm
WU Min, GAO Yu-feng, HE Jia, et al. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010023.htm
|
[28] |
刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612009.htm
LIU Lu, SHEN Yang, LIU Han-long, et al. Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016, 12(12): 3410-3416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612009.htm
|
[29] |
XIAO Y, STUEDLEIN A W, RAN J Y, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019016.
|
[30] |
XIAO Y, STUEDLEIN AW, PAN Z, et al. Toe bearing capacity of precast concrete piles through biogrouting improvement[J]. Journal of Geotechnical and Geo- environmental Engineering, 2020, 146(12): 06020026.
|
[31] |
XIAO P, LIU H L, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849-1862.
|
[32] |
XIAO Y, ZHAO C, SUN Y, et al. Compression behavior of MICP-treated sand with various gradations[J]. Acta Geotechnica, 2021, 16(5): 1391-1400.
|
[33] |
MARZIN T, DESVAGES B, CREPPY A, et al. Using microfluidic set-up to determine the adsorption rate of sporosarcina pasteurii bacteria on sandstone[J]. Transport in Porous Media, 2020, 132(2): 283-297.
|
[34] |
SCHUSZTER G, BRAU F, DE WIT A. Calcium carbonate mineralization in a confined geometry[J]. Environmental Science & Technology Letters, 2016, 3(4): 156-159.
|
[35] |
WANG Y Z, SOGA K, DEJONG J T, et al. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP)[J]. Geotechnique, 2019, 69(12): 1086-1094.
|
[36] |
何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
HE Xiang, MA Guo-liang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
|
[37] |
HU R, WAN J M, KIM Y, et al. Wettability impact on supercritical co2 capillary trapping: Pore-scale visualization and quantification[J]. Water Resources Research, 2017, 53(8): 6377-6394.
|
[38] |
FANIZZA MF, YOON H, ZHANG C, et al. Pore-scale evaluation of uranyl phosphate precipitation in a model groundwater system[J]. Water Resources Research, 2013, 49(2): 874-890.
|
[39] |
KIM DH, MAHABADI N, JANG J, et al. Assessing the kinetics and pore-scale characteristics of biological calcium carbonate precipitation in porous media using a microfluidic chip experiment[J]. Water Resources Research, 2020, 56(2): e2019WR025420.
|
[40] |
TAYLOR H F, O'SULLIVAN C, SIM W W. Geometric and hydraulic void constrictions in granular media[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(11): 04016057.
|
[41] |
CHENG L, CORD-RUWISCH R, SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 2013, 50(1): 81-90.
|
[42] |
GAO Y F, TANG X Y, CHU J, et al. Microbially induced calcite precipitation for seepage control in sandy soil[J]. Geomicrobiology Journal, 2019, 36(4): 366-375.
|
[43] |
BLAUW M, LAMBERT J, LATIL M N. Biosealing: A method for in situ sealing of leakages[C]//International Symposium on Ground Improvement Technologies and Case Histories (ISGI09), 2009, Singapore.
|
[44] |
WOEHL T J, EVANS J E, ARSLAN I, et al. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth[J]. ACS Nano, 2012, 6(10): 8599-8610.
|
[45] |
POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458.
|
[46] |
DUPRAZ S, PARMENTIER M, MÉNEZ B, et al. Experimental and numerical modeling of bacterially induced ph increase and calcite precipitation in saline aquifers[J]. Chemical Geology, 2009, 265(1/2): 44-53.
|
[47] |
EBIGBO A, PHILLIPS A, GERLACH R, et al. Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns[J]. Water Resources Research, 2012, 48(7): 17.
|
[48] |
QIN C Z, HASSANIZADEH S M, EBIGBO A. Pore-scale network modeling of microbially induced calcium carbonate precipitation: insight into scale dependence of biogeochemical reaction rates[J]. Water Resources Research, 2016, 52(11): 8969-8985.
|
[49] |
FERRIS F G, PHOENIX V, FUJITA Y, et al. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 degrees c in artificial groundwater[J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1701-1710.
|
[50] |
ZHONG S J, MUCCI A. Calcite and aragonite precipitation from seawater solutions of various salinites - precipitation rates and overgrowth compositions[J]. Chemical Geology, 1989, 78(3/4): 283-299.
|
[51] |
ZHANG C Y, DEHOFF K, HESS N, et al. Pore-scale study of transverse mixing induced CaCO3 precipitation and permeability reduction in a model subsurface sedimentary system[J]. Environmental Science & Technology, 2010, 44(20): 7833-7838.
|
[52] |
NIEL PLUMMER L, BUSENBERG E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochimica et Cosmochimica Acta, 1982, 46(6): 1011-1040.
|
1. |
王双娇,李志清,田怡帆,李燕明,周应新,李丹丹. 微生物岩土工程技术的过去、现在与未来. 工程地质学报. 2024(01): 236-264 .
![]() | |
2. |
李俊,何想,张瑾璇,赵常,肖杨,刘汉龙. 微生物加固研究可视化试验系统的开发与应用. 土木与环境工程学报(中英文). 2024(03): 73-79 .
![]() | |
3. |
张瑾璇,刘汉龙,肖杨. 液滴微流控芯片系统研发与微生物矿化机理研究. 岩土工程学报. 2024(06): 1236-1245 .
![]() | |
4. |
赖永明,俞缙,刘士雨,蔡燕燕,涂兵雄,刘谦. 低pH值下微生物诱导碳酸盐沉淀加固尾矿砂试验研究. 岩土力学. 2024(06): 1583-1596 .
![]() | |
5. |
刘汉龙,赵常,肖杨. 微生物矿化反应原理、沉积与破坏机制及理论:研究进展与挑战. 岩土工程学报. 2024(07): 1347-1358 .
![]() | |
6. |
王腾,钟东生,周茗如,梁生伟. 基于多孔介质理论的微生物固化砂土试验及模拟. 材料导报. 2023(S1): 163-169 .
![]() | |
7. |
张宇,何想,路桦铭,马国梁,刘汉龙,肖杨. 微生物-膨润土联合矿化防渗模型试验研究. 岩土力学. 2023(08): 2337-2349 .
![]() | |
8. |
肖维民,傅业姗,钟建敏,林馨,李双. 岩石节理中MICP反应碳酸钙沉积演化规律试验研究. 岩石力学与工程学报. 2023(S2): 3851-3860 .
![]() | |
9. |
孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
![]() | |
10. |
肖杨,陈萌,蒋翔,刘汉龙. 拓展土力学课程学习深度和广度的教学探索. 高等建筑教育. 2021(06): 16-23 .
![]() |