• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Jinxuan, LIU Hanlong, XIAO Yang. Development of droplet microfluidic system and regime of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1236-1245. DOI: 10.11779/CJGE20230255
Citation: ZHANG Jinxuan, LIU Hanlong, XIAO Yang. Development of droplet microfluidic system and regime of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1236-1245. DOI: 10.11779/CJGE20230255

Development of droplet microfluidic system and regime of biomineralization

More Information
  • Received Date: March 23, 2023
  • Available Online: June 05, 2023
  • The microbially induced calcium carbonate precipitation (MICP) is a novel technique for soil reinforcement based on biomineralization. The MICP regime has not been fully explored due to the complexity of biomineralization process with so many factors affecting nucleation and growth of minerals. Recently, biomineralization evolution can be visually observed at microscale by using the microfluidic system, whereas the magnification for observation of crystal growth is still limited. In this study, a droplet microfluidic chip is designed to generate oblate droplet cells with 450μm in diameter by adjusting the flow velocities of two immiscible liquids, which can be used for MICP microreactor, i.e., the droplet microfluidic system for biomineralization with high precision. With the help of the system, it is found that the distribution of bacteria around CaCO3 crystals is almost unchanged with the CaCO3 crystals growing proportionally, and the crystal morphology remains the same. Some bacterial cells nearby the crystal are adsorbed on the crystal surface during the crystal growth with no obvious bacterial aggregation around the crystal. In addition, with the help of SEM, some caves on the crystal surface are found to be the sites that bacterial cells are adsorbed. Consequently, the droplet microfluidic system can provide a precise microreactor for biomineralization and an effective method for exploring nucleation regimes in MICP.
  • [1]
    GUIDO A, SPOSATO M, PALLADINO G, et al. Biomineralization of primary carbonate cements: a new biosignature in the fossil record from the Anisian of Southern Italy[J]. Lethaia, 2022, 55(1): 1-21.
    [2]
    COSMIDIS J, BENZERARA K. Why do microbes make minerals?[J]. Comptes Rendus Géoscience, 2022, 354(G1): 1-39. doi: 10.5802/crgeos.107
    [3]
    JIMENEZ-MARTINEZ J, NGUYEN J, OR D. Controlling pore-scale processes to tame subsurface biomineralization[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(1): 27-52. doi: 10.1007/s11157-021-09603-y
    [4]
    崔昊, 肖杨, 孙增春, 等. 微生物加固砂土弹塑性本构模型[J]. 岩土工程学报, 2022, 44(3): 474-482. doi: 10.11779/CJGE202203009

    CUI Hao, XIAO Yang, SUN Zengchun, et al. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. (in Chinese) doi: 10.11779/CJGE202203009
    [5]
    BINDSCHEDLER S, CAILLEAU G, VERRECCHIA E. Role of fungi in the biomineralization of calcite[J]. Minerals, 2016, 6(2): 41. doi: 10.3390/min6020041
    [6]
    O'DONNELL S T, HALL C A, KAVAZANJIAN E Jr, et al. Biogeochemical model for soil improvement by denitrification[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 04019091. doi: 10.1061/(ASCE)GT.1943-5606.0002126
    [7]
    SCHÄDLER S, BURKHARDT C, HEGLER F, et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria[J]. Geomicrobiology Journal, 2009, 26(2): 93-103. doi: 10.1080/01490450802660573
    [8]
    ANBU P, KANG C H, SHIN Y J, et al. Formations of calcium carbonate minerals by bacteria and its multiple applications[J]. SpringerPlus, 2016, 5: 250. doi: 10.1186/s40064-016-1869-2
    [9]
    SIDDIQUE R, CHAHAL N K. Effect of ureolytic bacteria on concrete properties[J]. Construction and Building Materials, 2011, 25(10): 3791-3801. doi: 10.1016/j.conbuildmat.2011.04.010
    [10]
    NAWARATHNA T H K, NAKASHIMA K, KAWABE T, et al. Artificial fusion protein to facilitate calcium carbonate mineralization on insoluble polysaccharide for efficient biocementation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11493-11502.
    [11]
    XIAO Y, WANG Y, DESAI C S, et al. Strength and deformation responses of biocemented sands using a temperature-controlled method[J]. International Journal of Geomechanics, 2019, 19(11): 04019120. doi: 10.1061/(ASCE)GM.1943-5622.0001497
    [12]
    XIAO Y, HE X A, ZAMAN M, et al. Review of strength improvements of biocemented soils[J]. International Journal of Geomechanics, 2022, 22(11): 03122001. doi: 10.1061/(ASCE)GM.1943-5622.0002565
    [13]
    刘汉龙, 赵常, 肖杨. 微生物矿化反应原理、沉积与破坏机制及理论: 研究进展与挑战[J/OL]. 岩土工程学报, 1-12[2024-05-08]. http://kns.cnki.net/kcms/detail/32.1124.tu.20230601.2133.011.html.

    LIU Hanlong, ZHAO Chang, XIAO Yang. Reaction principle, deposition and failure mechanisms and theory of biomineralization: progress and challenges[J/OL]. Chinese Journal of Geotechnical Engineering, 1-12[2024-05-08]. http://kns.cnki.net/kcms/detail/32.1124.tu.20230601.2133.011.html. (in Chinese)
    [14]
    BENZERARA K, MIOT J, MORIN G, et al. Significance, mechanisms and environmental implications of microbial biomineralization[J]. Comptes Rendus Geoscience, 2011, 343(2/3): 160-167.
    [15]
    ZHANG W C, JU Y, ZONG Y W, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science & Technology, 2018, 52(16): 9266-9276.
    [16]
    GAO X, HAN Y, XIA Q Y, et al. Combined effects of microorganisms and inorganic templates on the nucleation and precipitation of magnesium-calcium minerals: experimental evidences and theoretical calculations[J]. Applied Surface Science, 2022, 598: 153813. doi: 10.1016/j.apsusc.2022.153813
    [17]
    DECLET A, REYES E, SUAREZ O M. Calcium carbonate precipitation: a review of the carbonate crystallization process and applications in bioinspired composites[J]. Reviews on Advanced Materials Science, 2016, 44(1): 87-107.
    [18]
    YAN H X, OWUSU D C, HAN Z Z, et al. Extracellular, surface, and intracellular biomineralization of bacillus subtilis daniel-1 bacteria[J]. Geomicrobiology Journal, 2021, 38(8): 698-708. doi: 10.1080/01490451.2021.1937406
    [19]
    WANG J M, YAO S N. The study on calcium carbonate mimetic biomineralization in the chitosan/phospholipid/ cholesterol system[J]. Chinese Journal of Inorganic Chemistry, 2001, 17(2): 202-208.
    [20]
    AZULAY D N, CHAI L. Calcium carbonate formation in the presence of biopolymeric additives[J]. Journal of Visualized Experiments, 2019(147): e59638.
    [21]
    RUI Y F, QIAN C X. The regulation mechanism of bacteria on the properties of biominerals[J]. Journal of Crystal Growth, 2021, 570: 126214. doi: 10.1016/j.jcrysgro.2021.126214
    [22]
    BRAISSANT O, CAILLEAU G, DUPRAZ C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids[J]. Journal of Sedimentary Research, 2003, 73(3): 485-490. doi: 10.1306/111302730485
    [23]
    KUMARI N T H. Enhancement of microbially induced carbonate precipitation using organic biopolymer[J]. International Journal of GEOMATE, 2018, 14(41): 7-12.
    [24]
    赵常, 何想, 胡冉, 等. 微生物矿化动力学理论与模拟[J]. 岩土工程学报, 2022, 44(6): 1096-1105. doi: 10.11779/CJGE202206014

    ZHAO Chang, HE Xiang, HU Ran, et al. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1096-1105. (in Chinese) doi: 10.11779/CJGE202206014
    [25]
    XIAO Y, XIAO W T, WU H R, et al. Fracture of interparticle MICP bonds under compression[J]. International Journal of Geomechanics, 2023, 23(3): 04022316. doi: 10.1061/IJGNAI.GMENG-8282
    [26]
    CAI G Z, XUE L, ZHANG H L, et al. A review on micromixers[J]. Micromachines, 2017, 8(9): 274. doi: 10.3390/mi8090274
    [27]
    WEINHARDT F, DENG J X, HOMMEL J, et al. Spatiotemporal distribution of precipitates and mineral phase transition during biomineralization affect porosity-permeability relationships[J]. Transport in Porous Media, 2022, 143(2): 527-549. doi: 10.1007/s11242-022-01782-8
    [28]
    XIAO Y, CAO B F, SHI J Q, et al. State-of-the-art review on the application of microfluidics in biogeotechnology[J]. Transportation Geotechnics, 2023, 41: 101030. doi: 10.1016/j.trgeo.2023.101030
    [29]
    何想. 基于微流控技术的微生物矿化胶结时空演化规律研究[D]. 重庆: 重庆大学, 2021.

    HE Xiang. Spatiotemporal Evolution of Biomineralized Cementation Based on Microfluidics[D]. Chongqing: Chongqing University, 2021. (in Chinese)
    [30]
    何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. doi: 10.11779/CJGE202006003

    HE Xiang, MA Guoliang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. (in Chinese) doi: 10.11779/CJGE202006003
    [31]
    WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.
    [32]
    LIN H, SULEIMAN M T, BROWN D G, et al. Mechanical behavior of sands treated by microbially induced carbonate precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 04015066. doi: 10.1061/(ASCE)GT.1943-5606.0001383
    [33]
    FUJITA M, NAKASHIMA K, ACHAL V, et al. Whole-cell evaluation of urease activity of Pararhodobacter sp. isolated from peripheral beachrock[J]. Biochemical Engineering Journal, 2017, 124: 1-5. doi: 10.1016/j.bej.2017.04.004
    [34]
    YI H H, ZHENG T W, JIA Z R, et al. Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria[J]. Journal of Crystal Growth, 2021, 564: 126113. doi: 10.1016/j.jcrysgro.2021.126113
    [35]
    CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9
    [36]
    PHILLIPS A J, GERLACH R, LAUCHNOR E, et al. Engineered applications of ureolytic biomineralization: a review[J]. Biofouling, 2013, 29(6): 715-733. doi: 10.1080/08927014.2013.796550
    [37]
    XIAO Y, HE X, WU W, et al. Kinetic biomineralization through microfluidic chip tests[J]. Acta Geotechnica, 2021, 16(10): 3229-3237. doi: 10.1007/s11440-021-01205-w
    [38]
    何想, 刘汉龙, 韩飞, 等. 微生物矿化沉积时空演化的微流控芯片试验研究[J]. 岩土工程学报, 2021, 43(10): 1861-1869. doi: 10.11779/CJGE202110012

    HE Xiang, LIU Hanlong, HAN Fei, et al. Spatiotemporal evolution of microbial-induced calcium carbonate precipitation based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1861-1869. (in Chinese) doi: 10.11779/CJGE202110012
    [39]
    WANG Y, SOGA K, DE J J, et al. Microscale visualization of microbial-induced carbonate precipitation (MICP) processes by different treatment procedures[C]// IS-Atlanta 2018 Geo-Mechanics from Micro to Macro-ISSMGE TC 105, Atlanta, 2018.
    [40]
    EL MOUNTASSIR G, LUNN R J, MOIR H, et al. Hydrodynamic coupling in microbially mediated fracture mineralization: formation of self-organized groundwater flow channels[J]. Water Resources Research, 2014, 50(1): 1-16. doi: 10.1002/2013WR013578
    [41]
    XIAO Y, HE X A, STUEDLEIN A W, et al. Crystal growth of MICP through microfluidic chip tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(5): 06022002. doi: 10.1061/(ASCE)GT.1943-5606.0002756
    [42]
    LI A, CHANG J, SHUI T, et al. Probing interaction forces associated with calcite scaling in aqueous solutions by atomic force microscopy[J]. Journal of Colloid and Interface Science, 2023, 633: 764-774. doi: 10.1016/j.jcis.2022.11.114
    [43]
    CUTHBERT M O, RILEY M S, HANDLEY-SIDHU S, et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation[J]. Ecological Engineering, 2012, 41: 32-40. doi: 10.1016/j.ecoleng.2012.01.008

Catalog

    Article views (430) PDF downloads (125) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return