• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QI Yongshuai, GAO Yufeng, HE Jia, ZHOU Yundong, YAN Boyang. Effects of soluble soybean polysaccharides on solidifying aeolian sand by soybean urease-induced carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 823-832. DOI: 10.11779/CJGE20221554
Citation: QI Yongshuai, GAO Yufeng, HE Jia, ZHOU Yundong, YAN Boyang. Effects of soluble soybean polysaccharides on solidifying aeolian sand by soybean urease-induced carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 823-832. DOI: 10.11779/CJGE20221554

Effects of soluble soybean polysaccharides on solidifying aeolian sand by soybean urease-induced carbonate precipitation

More Information
  • Received Date: December 27, 2022
  • Available Online: June 12, 2023
  • The soybean urease-induced carbonate precipitation is potentially valuable for solidifying desert aeolian sand. In order to improve the uniformity and effects of solidification, the soluble soybean polysaccharide (SSPS) is added to the extracted soybean-urease solution to induce carbonate precipitation. Firstly, the impact of SSPS on the characteristics of soybean-urease solution and the formation of calcium carbonate in soil-free solution are analyzed. Then, the one-phase injection method is used to solidify the aeolian sand in the soil environment. The unconfined compressive strength and triaxial consolidated undrained shear characteristics of the cemented samples are tested, and the solidification mechanism is explored with SEM. The results show that the addition of SSPS at 1 g/L and 3 g/L lightly inhibits soybean-urease activity but hardly affects the viscosity of soybean-urease solution, and more calcite crystals are generated in soil-free solution. At the same time, the strength and uniformity of the solidified aeolian sand are improved. The effects are better when the additive amount of SSPS is 3 g/L. The SEM results show that after adding SSPS, larger and more compact calcium carbonate crystals are formed in soil-free solution, and more and more compact calcium carbonate crystals are distributed at the contact points between the sand particles in the soil environment, thus enhancing the solidification effects.
  • [1]
    CHENG L, SHAHIN M A, CHU J. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 2018, 14(3): 615-626.
    [2]
    CUI M J, LAI H J, HOANG T, et al. Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement[J]. Acta Geotechnica, 2021, 17(7): 2931-2941.
    [3]
    YANG Y, CHU J, LIU H L, et al. Improvement of uniformity of biocemented sand column using CH3COOH-buffered one-phase-low-pH injection method[J]. Acta Geotechnica, 2023, 18(1): 413-428. doi: 10.1007/s11440-022-01576-8
    [4]
    CUI M J, LAI H J, WU S F, et al. Comparison of soil improvement methods using crude soybean enzyme, bacterial enzyme or bacteria-induced carbonate precipitation[J]. Géotechnique, 2024, 74(1): 18-26. doi: 10.1680/jgeot.21.00131
    [5]
    肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511-519. doi: 10.11779/CJGE202103014

    XIAO Peng, LIU Hanlong, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. (in Chinese) doi: 10.11779/CJGE202103014
    [6]
    XIAO Y, WANG Y, WANG S, et al. Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method[J]. Acta Geotechnica, 2021, 16(5): 1417-1427. doi: 10.1007/s11440-020-01122-4
    [7]
    MENG H, SHU S, GAO Y F, et al. Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement[J]. Engineering Geology, 2021, 294: 106374. doi: 10.1016/j.enggeo.2021.106374
    [8]
    徐望清, 郑俊杰, 崔明娟, 等. 引入脲酶抑制剂的微生物固化砂土试验研究[J]. 华中科技大学学报(自然科学版), 2020, 48(10): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202010020.htm

    XU Wangqing, ZHENG Junjie, CUI Mingjuan, et al. Experimental study on microorganism solidifying sand with urease inhibitor[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2020, 48(10): 114-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202010020.htm
    [9]
    范广才, 缪林昌, 孙潇昊, 等. 脲酶抑制剂对EICP防风固沙效果的影响研究[J]. 防灾减灾工程学报, 2022, 42(5): 1019-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202205017.htm

    FAN Guangcai, MIAO Linchang, SUN Xiaohao, et al. Effects researches of urease inhibitor on wind-breaking and sand-fixation of EICP[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(5): 1019-1027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202205017.htm
    [10]
    HAMDAN N, ZHAO Z, MUJICA M, et al. Hydrogel-assisted enzyme-induced carbonate mineral precipitation[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016089. doi: 10.1061/(ASCE)MT.1943-5533.0001604
    [11]
    MIAO L C, WU L Y, SUN X H, et al. Method for solidifying desert sands with enzyme-catalysed mineralization[J]. Land Degradation & Development, 2019, 31(11): 1317-1324.
    [12]
    ALMAJED A, LEMBOYE K, ARAB M G, et al. Mitigating wind erosion of sand using biopolymer-assisted EICP technique[J]. Soils and Foundations, 2020, 60(2): 356-371. doi: 10.1016/j.sandf.2020.02.011
    [13]
    YAO D F, WU J, WANG G W, et al. Effect of wool fiber addition on the reinforcement of loose sands by microbially induced carbonate precipitation (MICP): mechanical property and underlying mechanism[J]. Acta Geotechnica, 2021, 16(5): 1401-1416. doi: 10.1007/s11440-020-01112-6
    [14]
    谭永辉, 王文生, 秦玉昌, 等. 豆渣中水溶性大豆多糖的提取与应用[J]. 大豆科学, 2008, 27(1): 150-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201103034.htm

    TAN Yonghui, WANG Wensheng, QIN Yuchang, et al. Extraction and application of soluble soybean polysaccharides from bean curd waste[J]. Soybean Science, 2008, 27(1): 150-153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201103034.htm
    [15]
    吴敏, 高玉峰, 何稼, 等. 大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J]. 岩土工程学报, 2020, 42(10): 1914-1921. doi: 10.11779/CJGE202010017

    WU Min, GAO Yufeng, HE Jia, et al. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. (in Chinese) doi: 10.11779/CJGE202010017
    [16]
    WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. doi: 10.1080/01490450701436505
    [17]
    CHOI S G, PARK S S, WU S F, et al. Methods for calcium carbonate content measurement of biocemented soils[J]. Journal of Materials in Civil Engineering, 2017, 29(11): 06017015. doi: 10.1061/(ASCE)MT.1943-5533.0002064
    [18]
    GAO Y F, HANG L, HE J, et al. Mechanical behaviour of biocemented sands at various treatment levels and relative densities[J]. Acta Geotechnica, 2019, 14(3): 697-707. doi: 10.1007/s11440-018-0729-3
    [19]
    NAKAMURA A, FURUTA H, KATO M, et al. Effect of soybean soluble polysaccharides on the stability of milk protein under acidic conditions[J]. Food Hydrocolloids, 2003, 17(3): 333-343. doi: 10.1016/S0268-005X(02)00095-4
    [20]
    CAI Y, CAI B, IKEDA S. Stabilization of milk proteins in acidic conditions by pectic polysaccharides extracted from soy flour[J]. Journal of Dairy Science, 2017, 100(10): 7793-7801. doi: 10.3168/jds.2016-12190
    [21]
    沈泰宇, 李贤, 汪时机, 等. 微生物固化砂质黏性紫色土的三轴抗剪强度与浸水抗压强度[J]. 农业工程学报, 2019, 35(21): 135-143. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201921016.htm

    SHEN Taiyu, LI Xian, WANG Shiji, et al. Triaxial shear strength and immersion compressive strength of sandy clayey purple soil treated by microbial induced calcite precipitation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 135-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201921016.htm
    [22]
    CHENG L, CORD-RUWISCH R, SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 2013, 50(1): 81-90. doi: 10.1139/cgj-2012-0023
    [23]
    CUI M J, ZHENG J J, CHU J, et al. Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand[J]. Acta Geotechnica, 2021, 16(5): 1377-1389. doi: 10.1007/s11440-020-01099-0
  • Cited by

    Periodical cited type(5)

    1. 单毅,平阳泽,袁杰,崔杰,童华炜,李亚东. 基于颗粒尺寸与级配的微生物固化钙质砂最大动剪切模量试验研究. 岩石力学与工程学报. 2024(10): 2455-2465 .
    2. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    3. 熊海斌,余虔,张升,童晨曦,兰鹏,刘光庆. 考虑颗粒破碎的砂土UH模型及其参数反演. 岩土工程学报. 2023(01): 134-143 . 本站查看
    4. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    5. 王永志,王体强,袁晓铭,张雪东,陈卓识. 动力离心试验反演分析砂土模量阻尼比特征与可靠性. 岩石力学与工程学报. 2022(08): 1717-1727 .

    Other cited types(7)

Catalog

    Article views (444) PDF downloads (111) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return