Citation: | WANG Jian-ning, YANG Jing, ZHUANG Hai-yang, FU Ji-sai, DOU Yuan-ming. Shaking table test on liquefaction characteristics of foundation around a complicated subway station with diaphragm walls[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1858-1866. DOI: 10.11779/CJGE202010011 |
[1] |
杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm
DU Xiu-li, LI Yang, XU Cheng-shun, et al. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm
|
[2] |
庄海洋, 付继赛, 陈苏, 等. 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904004.htm
ZHUAGN Haiyang, FU Jisai, CHEN Su, et al. Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test[J]. Rock and Soil Mechanics, 2019, 40(4): 1263-1262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904004.htm
|
[3] |
CHEN Z Y, CHEN W, LI Y Y, et al. Shaking table test of a multi-story subway station under pulse-like ground motions[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 111-122. doi: 10.1016/j.soildyn.2015.12.002
|
[4] |
KHERADI H, NAGANO K, NISHI H, et al. 1-g shaking table tests on seismic enhancement of existing box culvert with partial ground-improvement method and its 2D dynamic simulation[J]. Soils and Foundations, 2018, 58(3): 563-581. doi: 10.1016/j.sandf.2018.01.002
|
[5] |
YAN X, YUAN J Y, YU H T, et al. Multi-point shaking table test design for long tunnels under non-uniform seismic loading[J]. Tunnelling and Underground Space Technology, 2016, 59: 114-126. doi: 10.1016/j.tust.2016.07.002
|
[6] |
陈国兴, 左熹, 王志华, 等. 可液化场地地铁车站结构地震破坏特性振动台试验研究[J]. 建筑结构学报, 2012, 33(1): 128-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201201017.htm
CHEN Guo-xin, ZUO Xi, WANG Zhi-hua, et al. Shaking table test on seismic failure characteristics of subway station structure at liquefiable ground[J]. Rock and Soil Mechanics, 2012, 33(1): 128-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201201017.htm
|
[7] |
CHIAN S C, TOKIMATSU K, MADABHUSHI S P G. Soil liquefaction-induced uplift of underground structures: physical and numerical modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(10): 04014057. doi: 10.1061/(ASCE)GT.1943-5606.0001159
|
[8] |
TSINIDIS G, ROVITHIS E, PITILAKIS K, et al. Seismic response of box-type tunnels in soft soil: experimental and numerical investigation[J]. Tunnelling and Underground Space Technology, 2016, 59: 199-214. doi: 10.1016/j.tust.2016.07.008
|
[9] |
许成顺, 李洋, 杜修力, 等. 上覆土竖向惯性力对浅埋地下框架结构地震损伤反应影响离心机振动台模型试验研究[J]. 土木工程学报, 2019, 52(3): 100-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903010.htm
XU Cheng-shun, LI Yang, DU Xiu-li, et al. Dynamic centrifuge tests for influence of vertical inertia force of overburden soil on earthquake damage response of shallow-buried underground frame structures[J]. China Civil Engineering Journal, 2019, 52(3): 100-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903010.htm
|
[10] |
ZHAO H L, YUAN Y, YE Z M, et al. Response characteristics of an atrium subway station subjected to bidirectional ground shaking[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105737. doi: 10.1016/j.soildyn.2019.105737
|
[11] |
TAO L J, DING P, SHI C, et al. Shaking table test on seismic response characteristics of prefabricated subway station structure[J]. Tunnelling and Underground Space Technology, 2019, 91: 102994. doi: 10.1016/j.tust.2019.102994
|
[12] |
CHEN S, TANG B Z, ZHAO K, et al. Seismic response of irregular underground structures under adverse soil conditions using shaking table tests[J]. Tunnelling and Underground Space Technology, 2020, 95: 103145. doi: 10.1016/j.tust.2019.103145
|
[13] |
王建宁, 窦远明, 庄海洋, 等. 土-地下连续墙-复杂异跨地铁车站结构动力相互作用分析[J]. 岩土工程学报, 2019, 41(7): 1235-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907009.htm
WANG Jian-ning, DOU Yuan-ming, ZHUANG Hai-yang, et al. Seismic responses of dynamic interaction system of soil-diaphragm wall- complicated unequal-span subway station[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1235-1243. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907009.htm
|
[14] |
陈国兴, 王志华, 左熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001017.htm
CHEN Guo-xing, WANG Zhi-hua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001017.htm
|
[15] |
许成顺, 豆鹏飞, 高畄成, 等. 地震动持时压缩比对可液化地基地震反应影响的振动台试验[J]. 岩土力学, 2019, 40(1): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901012.htm
XU Cheng-shun, DOU Peng-fei, GAO Liu-cheng, et al. Shaking table test on effects of ground motion duration compression ratio on seismic response of liquefied foundation[J]. Rock and Soil Mechanics, 2019, 40(1): 147-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901012.htm
|
[16] |
YASUDA S, HARADA K, ISHIKAWA, K, et al. Characteristics of liquefaction in Tokyo bay area by the 2011 Great East Japan Earthquake[J]. Soils and Foundations, 2012, 52(5): 793-810.
|
[17] |
WANG J N, MA G W, ZHUANG H Y, et al. Influence of diaphragm wall on seismic responses of large unequal-span subway station in liquefiable soils[J]. Tunnelling and Underground Space Technology, 2019, 91: 102988.
|
[1] | CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074 |
[2] | HAN Hua-qiang, CHEN Sheng-shui, FU Hua, ZHENG Cheng-feng. Particle breakage of rockfill materials under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1753-1760. DOI: 10.11779/CJGE201710001 |
[3] | CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051 |
[4] | HAN Hong-xing, CHEN-Wei, QIU Zi-feng, FU Xu-dong. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 234-239. DOI: 10.11779/CJGE2016S2038 |
[5] | CAI Zheng-yin, LI Xiao-mei, HAN Lin, GUAN Yun-fei. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. DOI: 10.11779/CJGE201608001 |
[6] | CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, HUANG Ying-hao. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. DOI: 10.11779/CJGE201605019 |
[7] | LIU Si-hong, HUANG Ming-kun, WANG Zi-jian, KONG Wei-yao, XIE Hao, WANG Yi-shu. Simple shear tests on breakable rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1503-1508. DOI: 10.11779/CJGE201508021 |
[8] | CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009 |
[9] | CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, PENG Cheng. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495. |
[10] | KONG Dezhi, ZHANG Bingyin, SUN Xun. Triaxial tests on particle breakage strain of artificial rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 464-469. |
1. |
童小东,陈文义,慈祥,孙任运,黎冰. 生物高分子聚合物固化沙漠砂室内试验研究. 工程力学. 2025(03): 68-76 .
![]() | |
2. |
王钰轲,陈浩,宋迎宾,王振海,钟燕辉,张蓓. 大豆脲酶诱导碳酸钙固化黄河泥沙水稳定性试验研究. 水利学报. 2024(01): 71-79 .
![]() | |
3. |
亓永帅,高玉峰,何稼,周云东,严柏杨. 可溶性大豆多糖对大豆脲酶诱导碳酸钙沉积固化风积沙效果的影响研究. 岩土工程学报. 2024(04): 823-832 .
![]() | |
4. |
倪静,韩晓婷,贺青青,耿雪玉. 黄原胶-粉煤灰联合处理酸污染土试验研究. 长江科学院院报. 2024(04): 111-118 .
![]() | |
5. |
王欢,张佳伟,郭合家. EICP改良膨胀土的物理力学性质试验研究. 土木与环境工程学报(中英文). 2024(05): 109-116 .
![]() | |
6. |
董旭光,方礼鑫,马渊博,胡倩倩,李瑞瑞. 大豆脲酶诱导碳酸钙固化黄土的强度试验研究. 地震工程学报. 2024(05): 1009-1020 .
![]() | |
7. |
褚文杰,李驰,武慧敏,高瑜. 土豆脲酶提取及基于酶诱导碳酸钙沉淀技术对风积沙改良的方法. 土木与环境工程学报(中英文). 2023(02): 74-80 .
![]() | |
8. |
吕家栋,赵立财. 黄原胶改善黏土断裂性能研究. 人民长江. 2023(04): 205-210+217 .
![]() | |
9. |
任廷婕,袁立敏,高永,王春颖,徐艳艳. 环保型固沙材料的研究进展. 中国沙漠. 2023(03): 160-168 .
![]() | |
10. |
张建伟,李想,石磊,尹悦. 废弃口罩对EICP固化砂土力学特性的影响. 河南大学学报(自然科学版). 2023(03): 359-366 .
![]() | |
11. |
陆爱灵,朱东云,张宏,曹函,张婧. EICP联合生物炭固化修复重金属污染土试验. 环境工程. 2023(08): 176-180 .
![]() | |
12. |
袁嘉茂,高永,李婉娇,任怀新,吴振亮. 生物诱导碳酸钙土体固化技术在防沙领域研究进展. 广东水利水电. 2023(09): 75-80 .
![]() | |
13. |
王灏喆,武钢义,代育恒,黄灿,常少华. 基于响应面法的EICP-PVA固化粉砂土优化试验研究. 公路. 2023(11): 264-272 .
![]() | |
14. |
赵轩,刘光宇,胡天林,赵璧,吕刚锋. EICP固化砂土强度特性试验研究. 水利与建筑工程学报. 2023(06): 114-121 .
![]() | |
15. |
刘津江,王淼,樊敏,刘西周. 产脲酶微生物的筛选和应用研究进展. 生物技术. 2022(01): 107-113+119 .
![]() | |
16. |
徐银龙,郑文杰,王琳,薛中飞,谢毅鑫. 壳聚糖联合酶诱导碳酸盐沉淀处理铜废水的劣化现象和强化机理研究. 化工学报. 2022(05): 2222-2232 .
![]() | |
17. |
曹光辉,刘士雨,蔡燕燕,俞缙,孙志龙. 靶向激活产脲酶微生物联合酶诱导碳酸盐沉淀加固陆域吹填海砂试验研究. 岩土力学. 2022(08): 2241-2252 .
![]() | |
18. |
郑文杰,胡文乐,袁可,文少杰. 脲酶矿化作用机制及其提升仿古黏土砖瓦阻水性能研究. 岩土力学. 2022(S2): 255-264 .
![]() | |
19. |
范广才,缪林昌,孙潇昊,王恒星,吴林玉. 脲酶抑制剂对EICP防风固沙效果的影响研究. 防灾减灾工程学报. 2022(05): 1019-1027 .
![]() | |
20. |
原华,刘帅星,刘康. EICP联合Na-Mt固化粉砂抗剪特性. 中国科技论文. 2022(12): 1358-1362+1375 .
![]() | |
21. |
王磊,王博,刘志强,常新昊. 基于脲酶诱导碳酸钙沉淀的土体固化研究进展. 工业建筑. 2022(11): 57-66 .
![]() | |
22. |
原华,刘康,原耀楠,冯佳星. 大豆脲酶诱导碳酸钙沉淀的多因素影响分析. 人工晶体学报. 2021(02): 375-380 .
![]() | |
23. |
何想,刘汉龙,韩飞,马国梁,赵常,楚剑,肖杨. 微生物矿化沉积时空演化的微流控芯片试验研究. 岩土工程学报. 2021(10): 1861-1869 .
![]() | |
24. |
曹光辉,刘士雨,俞缙,蔡燕燕,胡洲,毛坤海. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用. 高校地质学报. 2021(06): 754-768 .
![]() | |
25. |
何稼,吴敏,孟浩,亓永帅,高玉峰. 生物固土用于防风固沙的研究进展. 高校地质学报. 2021(06): 687-696 .
![]() |