• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chun-hua, WU Jia-wei, CHEN Yun, XIE Hai-jian, CHEN Yun-min. Simplified method for determination of thickness of composite liners based on contaminant breakthrough time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841-1848. DOI: 10.11779/CJGE202010009
Citation: ZHANG Chun-hua, WU Jia-wei, CHEN Yun, XIE Hai-jian, CHEN Yun-min. Simplified method for determination of thickness of composite liners based on contaminant breakthrough time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841-1848. DOI: 10.11779/CJGE202010009

Simplified method for determination of thickness of composite liners based on contaminant breakthrough time

More Information
  • Received Date: December 05, 2019
  • Available Online: December 07, 2022
  • Based on the statistic analysis of the measured concentrations of leachate pollutants found in the six landfill sites in China and the contaminant limit concentration specified in the drinking water standard, the breakthrough standard values for the indicative contamiant in the leachate in the typical and extreme situations are determined to be 0.1 and 0.01, respectively. Based on the analytical solution of contaminant transport through a composite liner consisting of a geomembrane (GMB) and a compacted clay liner (CCL), the simplified formula for determination of the thickness of the composite liner is obtained for the indicative inorganic and organic contaminants by using the numerical fitting method. The simplified method is used to design the composite liner system at the Tianziling landfill site in Hangzhou. When considering the lead (Pb) as the index contaminant, the breakthrough time will be longer than 50 years in the case with the thickness of CCL larger than 0.6 m.
  • [1]
    陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm

    CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm
    [2]
    陈云敏, 谢海建, 张春华. 污染物击穿防污屏障与地下水土污染防控研究进展[J]. 水利水电科技进展, 2016, 36(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm

    CHEN Yun-min, XIE Hai-jian, ZHANG Chun-hua. Review on penetration of barriers by contaminants and technologies for groundwater and soil contamination control[J]. Advances in Science and Technology of Water Resource, 2016, 36(1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm
    [3]
    FOOSE G J, BENSON C H, EDIL T B. Comparison of solute transport in three composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(5): 391-403. doi: 10.1061/(ASCE)1090-0241(2002)128:5(391)
    [4]
    PARK M G, EDIL T B, BENSON C H. Modeling volatile organic compound transport in composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 641-657. doi: 10.1061/(ASCE)GT.1943-5606.0000630
    [5]
    EL-ZEIN A. A general approach to the modelling of contaminant transport through composite landfill liners with intact or leaking geomembranes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 32(3): 265-287.
    [6]
    EL-ZEIN A, MCCARROLL I, TOUZE-FOLTZ N. Three-dimensional finite-element analyses of seepage and contaminant transport through composite geosynthetics clay liners with multiple defects[J]. Geotextiles and Geomembranes, 2012, 33(4): 34-42.
    [7]
    El-Zein A, ROWE R K. Impact on groundwater of concurrent leakage and diffusion of dichloromethane through geomembranes in landfill liners[J]. Geosynthetics International, 2008, 15(1): 55-71. doi: 10.1680/gein.2008.15.1.55
    [8]
    ZHANG H J, JENG D S, SEYMOUR B R, et al. Solute transport in partially-saturated deformable porous media: application to a landfill clay liner[J]. Advances in Water Resources, 2012, 40(5): 1-10.
    [9]
    LIU T, HU L. Organic acid transport through a partially saturated liner system beneath a landfill[J]. Geotextiles and Geomembranes, 2014, 42(5): 428-436. doi: 10.1016/j.geotexmem.2014.06.007
    [10]
    XIE H J, JIN A M, TANG X W. An analytical solution to organic contaminant diffusion through composite liners considering the effect of degradation[J]. Geotextiles and Geomembranes, 2013, 36(36): 10-18.
    [11]
    FOOSE G J, BENSON C H, EDIL T B. Predicting leakage through composite landfill liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(6): 510-520. doi: 10.1061/(ASCE)1090-0241(2001)127:6(510)
    [12]
    XIE H J, CHEN Y M, LOU Z H. An analytical solution to contaminant transport through composite liners with geomembrane defects[J]. Science China (Technological Sciences), 2010, 53(5): 1424-1433. doi: 10.1007/s11431-010-0111-7
    [13]
    ROWE R K, DUQUENNOI C. Liquid flow through composite liners due to geomembrane defects: analytical solutions for axi-symmetric and two-dimensional problems[J]. Geosynthetics International, 1999, 6(6): 455-479. doi: 10.1680/gein.6.0160
    [14]
    XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research, 2015, 22(4): 2824-2836. doi: 10.1007/s11356-014-3565-5
    [15]
    CHEN Y M, WANG Y Z, XIE H J. Breakthrough time-based design of landfill composite liners[J]. Geotextiles and Geomembranes, 2015, 43(2): 196-206. doi: 10.1016/j.geotexmem.2015.01.005
    [16]
    XIE H J, JIANG Y S, ZHANG C H, et al. Steady-state analytical models for performance assessment of landfill composite liners[J]. Environmental Science and Pollution Research International, 2015, 22(16): 12198-214. doi: 10.1007/s11356-015-4200-9
    [17]
    ROWE R K, NADARAJAH P. An analytical method for predicting the velocity field beneath landfills[J]. Canadian Geotechnical Journal, 1997, 34(2): 264-282. doi: 10.1139/t96-110
    [18]
    CHEN Y M, XIE H J, HAN K, et al. An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications[J]. Environmental Geology, 2009, 58(5): 1083-1094. doi: 10.1007/s00254-008-1587-3
    [19]
    谢海建, 蒋元生, 杨文参, 等. 考虑降解时双层介质中有机污染物的一维扩散解析解[J]. 岩土工程学报, 2013, 35(增刊1): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1032.htm

    XIE Hai-jian, JIANG Yuan-sheng, YANG When-can, et al. Analytical solutions for contaminant diffusion in two-layered porous media considering degradation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 190-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1032.htm
    [20]
    SHU S, ZHU W, WANG S W, et al. Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: centrifuge and numerical modeling approach[J]. Science of the Total Environment, 2018, 612: 1123-1131. doi: 10.1016/j.scitotenv.2017.08.185
    [21]
    张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018.

    ZHANG Chun-hua. Mechanisms for Contaminant Transport in Landfill Composite Liners under Thermal Effect and its Optimization Design Method[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [22]
    朱伟, 舒实, 王升位, 等. 垃圾填埋场渗滤液击穿防渗系统的指示污染物研究[J]. 岩土工程学报, 2016, 38(4): 619-626. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604006.htm

    ZHU Wei, SHU Shi, WANG Sheng-wei, et al. Investigation of indicating pollutant for landfill leachate breaking through anti-seepage system[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 619-626. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604006.htm
    [23]
    ROWE R K, SAHELI P T, RUTTER A. Partitioning and diffusion of PBDEs through an HDPE geomembrane[J]. Waste Management, 2016, 55: 191-203. doi: 10.1016/j.wasman.2016.05.006
    [24]
    ROWE R K. Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste[C]//Proceedings of the Sixth International Conference on Geosynthetics, Atlanta, Industrial Fabrics Association IInternational, 1998, St Paul: 27-102.
    [25]
    ROWE R K. Short- and long-term leakage through composite liners, the 7th Arthur Casagrande Lecture[J]. Canadian Geotechnical Journal, 2012, 49(2): 141-169. doi: 10.1139/t11-092
    [26]
    ROWE R K. Short- and long-term leakage through composite liners[J]. Canadian Geotechnical Journal, 2012, 49(2): 141-169. doi: 10.1139/t11-092
    [27]
    ROWE R K, YANG P, CHAPPEL M J, et al. Wrinkling of a geomembrane on a compacted clay liner on a slope[J]. Geotechnical Engineering Journal of the SEAGS and AGSSEA, 2012, 43(3): 11-18.
    [28]
    ROWE R K. Long-term performance of contaminant barrier systems[J]. Géotechnique, 2005, 55(9): 631-678. doi: 10.1680/geot.2005.55.9.631
    [29]
    HAXO H E. Determining the Transport Through Geomembranes of Various Permeants in Different Applications[M]//Geosynthetic Testing for Waste Containment Applications, KOERNER R M, ed. Las Vegas: ASTM Special Publication, 1990: 75-94.
    [30]
    ROWE R K, HRAPOVIC L, KOSARIC N. Diffusion of chloride and dichloromethane through an HDPE geomembrane[J]. Geosynthetics International, 1995, 2(3): 507-536. doi: 10.1680/gein.2.0021
    [31]
    ROWE R K, QUIGLEY R M, BRACHMAN R W I, et al. Barrier Systems for Waste Disposal Facilities[M]. London: Spon Press, 2004.
    [32]
    谢海建. 成层介质污染物的运移机理及衬垫系统防污性能研究[D]. 杭州: 浙江大学, 2008.

    XIE Hai-jian. A Study on Contaminant Transport in Layered Media and the Performance of Landfill Liner Systems[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
    [33]
    STUERMER M M, BOSCOV M E G, OLIVEIRA E. Metal transport parameters of a gneiss saprolitic silty soil for liner design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 509-518. doi: 10.1061/(ASCE)1090-0241(2008)134:4(509)
    [34]
    何晓晓. 江村沟垃圾渗滤液尾水的深度处理研究[D]. 西安: 长安大学, 2013.

    HE Xiao-xiao. Deep Research on the Tail Water of Leachate from Jiang Cungou MSW Landfill[D]. Xi'an: Chan'an University, 2013. (in Chinese)
    [35]
    刘海龙, 何海杰, 兰吉武. 填埋场渗滤液水位对填埋气收集的影响研究[J]. 水利与建筑工程学报, 2017, 15(5): 129-133. doi: 10.3969/j.issn.1672-1144.2017.05.022

    LIU Hai-long, HE Hai-jie, LAN Ji-wu. Influences of leachate level on landfill gas collection[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(5): 129-133. (in Chinese) doi: 10.3969/j.issn.1672-1144.2017.05.022
    [36]
    陈云敏, 刘晓成, 徐文杰, 等. 填埋生活垃圾稳定化特征与可开采性分析:以中国第一代卫生填埋场为例[J]. 中国科学:技术科学, 2019, 49(2): 199-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201902010.htm

    CHEN Yun-min, LIU Xiao-cheng, XU When-jie, et al. Analysis on stabilization characteristics and exploitability of landfilled municipal solid waste: case of a typical landfill in China[J]. Scientia Sinica Technologica, 2019, 49(2): 199-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201902010.htm
  • Cited by

    Periodical cited type(6)

    1. 王宝,朱佳佳,张迪,王娟娟,王泽峰. 氨氮在膨润土改性黄土衬垫层中的吸附和扩散行为研究. 水文地质工程地质. 2024(03): 202-209 .
    2. 张春华,黄江东,邓正定,谢海建,邓通发. 热渗透作用下有机污染物在双人工复合衬层中的一维运移模型. 岩土工程学报. 2024(06): 1254-1262 . 本站查看
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 张春华,黄江东,李晓宙,谢海建,陈赟. 热扩散作用下污染物在CCL中运移的一维解析模型及其应用. 岩土工程学报. 2023(03): 541-550 . 本站查看
    5. 董洋,张文,李大伟,姚兰,初文磊,王海东,殷晓东. 柔性垂直防渗技术膨润土-黏土密封材料防渗性能研究. 环境工程技术学报. 2022(03): 824-833 .
    6. 李江山,江文豪,葛尚奇,黄啸,程鑫,万勇. 非等温分布条件下压实黏土衬垫中固结与污染物运移耦合模型研究. 岩土工程学报. 2022(11): 2071-2080 . 本站查看

    Other cited types(4)

Catalog

    Article views (282) PDF downloads (121) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return