• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chunhua, HUANG Jiangdong, DENG Zhengding, XIE Haijian, DENG Tongfa. One-dimension model for transport of organic contaminants in double-artificial composite liner under thermal osmosis[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1254-1262. DOI: 10.11779/CJGE20230280
Citation: ZHANG Chunhua, HUANG Jiangdong, DENG Zhengding, XIE Haijian, DENG Tongfa. One-dimension model for transport of organic contaminants in double-artificial composite liner under thermal osmosis[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1254-1262. DOI: 10.11779/CJGE20230280

One-dimension model for transport of organic contaminants in double-artificial composite liner under thermal osmosis

More Information
  • Received Date: April 02, 2023
  • Available Online: June 04, 2024
  • A one-dimensional model for transport of organic contaminants in a double-artificial composite liner under thermal osmosis is proposed. The model is simulated by using the COMSOL Multiphysics. The results show that the bottom concentration only increases by 4.9% even when the leachate head increases to 10 m. It means that the effects of leachate head on transport of organic contaminants in the double-artificial composite liner are negligible. The bottom concentration of the double-artificial composite liner system will increase by 31.5% when the coefficient of thermal osmosis increases to 5×10-11 m2·K-1·s-1. The effects of thermal osmosis should be considered in the double-artificial composite liner design when the coefficient of thermal osmosis reaches 1×10-11 m2·K-1·s-1. The length of wrinkle and the frequency of holes on the secondary liner geomembrane have significant effects on contaminant transport in the double-artificial composite liner. The bottom concentration increases by 87% when the length of wrinkle increases from10 to 100 m. In the construction of the double-artificial composite liner, the construction quality of the secondary liner geomembrane should be strictly controlled to reduce the generation of wrinkles and holes, which can effectively improve the service performance of the liner system.
  • [1]
    薛强, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2020, 53(3): 80-94. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202003010.htm

    XUE Qiang, ZHAN Liangtong, HU Liming, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2020, 53(3): 80-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202003010.htm
    [2]
    周正兵, 王钊, 费香泽. 用于固体废弃物填埋场中的两种复合防渗系统的比较[J]. 环境工程, 2002, 20(3): 55-59, 5. doi: 10.3969/j.issn.1000-8942.2002.03.019

    ZHOU Zhengbing, WANG Zhao, FEI Xiangze. Comparision of two kinds of composite impervious systems used in solid waste landfills[J]. Environmental Engineering, 2002, 20(3): 55-59, 5. (in Chinese) doi: 10.3969/j.issn.1000-8942.2002.03.019
    [3]
    周炼, 安达, 杨延梅, 等. 危险废物填埋场复合衬层渗漏分析与污染物运移预测[J]. 环境科学学报, 2017, 37(6): 2210-2217. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706024.htm

    ZHOU Lian, AN Da, YANG Yanmei, et al. Predicting leakage and contaminant transport through composite liners in hazardous waste landfill[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2210-2217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706024.htm
    [4]
    谢海建, 陈云敏, 楼章华. 污染物通过有缺陷膜复合衬垫的一维运移解析解[J]. 中国科学: 技术科学, 2010, 40(5): 486-495. doi: 10.3969/j.issn.0253-2778.2010.05.0008

    XIE Haijian, CHEN Yunmin, LOU Zhanghua. Analytical solution of one-dimensional migration of pollutants through defective membrane composite liner[J]. Scientia Sinica (Technologica), 2010, 40(5): 486-495. (in Chinese) doi: 10.3969/j.issn.0253-2778.2010.05.0008
    [5]
    冯世进, 彭明清, 陈樟龙, 等. 复合衬垫中污染物一维瞬态扩散-对流运移规律研究[J]. 岩土工程学报, 2022, 44(5): 799-809. doi: 10.11779/CJGE202205002

    FENG Shijin, PENG Mingqing, CHEN Zhanglong, et al. One-dimensional transport of transient diffusion- advection of organic contaminant through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 799-809. (in Chinese) doi: 10.11779/CJGE202205002
    [6]
    张春华, 吴家葳, 陈赟, 等. 基于污染物击穿时间的填埋场复合衬垫厚度简化设计方法[J]. 岩土工程学报, 2020, 42(10): 1841-1848. doi: 10.11779/CJGE202010009

    ZHANG Chunhua, WU Jiawei, CHEN Yun, et al. Simplified method for determination of thickness of composite liners based on contaminant breakthrough time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841-1848. (in Chinese) doi: 10.11779/CJGE202010009
    [7]
    张春华, 黄江东, 李晓宙, 等. 热扩散作用下污染物在CCL中运移的一维解析模型及其应用[J]. 岩土工程学报, 2023, 45(3): 541-550. doi: 10.11779/CJGE20211427

    ZHANG Chunhua, HUANG Jiangdong, LI Xiaozhou, et al. One-dimensional analytical model for contaminant transport through CCL under thermal diffusion and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 541-550. (in Chinese) doi: 10.11779/CJGE20211427
    [8]
    李江山, 江文豪, 葛尚奇, 等. 非等温分布条件下压实黏土衬垫中固结与污染物运移耦合模型研究[J]. 岩土工程学报, 2022, 44(11): 2071-2080. doi: 10.11779/CJGE202211013

    LI Jiangshan, JIANG Wenhao, GE Shangqi, et al. Coupling model for consolidation and contaminant transport in compacted clay liners under non-isothermal condition[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2071-2080. (in Chinese) doi: 10.11779/CJGE202211013
    [9]
    CHEN Y F, ZHOU C B, JING L R. Modeling coupled THM processes of geological porous media with multiphase flow: theory and validation against laboratory and field scale experiments[J]. Computers and Geotechnics, 2009, 36(8): 1308-1329. doi: 10.1016/j.compgeo.2009.06.001
    [10]
    GHASSEMI A, TAO Q, DIEK A. Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale[J]. Journal of Petroleum Science and Engineering, 2009, 67(1/2): 57-64.
    [11]
    GONÇALVÈS J, DE MARSILY G, TREMOSA J. Importance of thermo-osmosis for fluid flow and transport in clay formations hosting a nuclear waste repository[J]. Earth and Planetary Science Letters, 2012, 339/340: 1-10. doi: 10.1016/j.epsl.2012.03.032
    [12]
    GONÇALVÈS J, TRÉMOSA J. Estimating thermo-osmotic coefficients in clay-rocks: I. Theoretical insights[J]. Journal of Colloid and Interface Science, 2010, 342(1): 166-174. doi: 10.1016/j.jcis.2009.09.056
    [13]
    THOMAS H R, VARDON P J, CLEALL P J. Three-dimensional behaviour of a prototype radioactive waste repository in fractured granitic rock[J]. Canadian Geotechnical Journal, 2014, 51(3): 246-259. doi: 10.1139/cgj-2013-0094
    [14]
    SOLER J M. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport[J]. Journal of Contaminant Hydrology, 2001, 53(1/2): 63-84.
    [15]
    ZAGORŠČAK R, SEDIGHI M, THOMAS H R. Effects of thermo-osmosis on hydraulic behavior of saturated clays[J]. International Journal of Geomechanics, 2017, 17(3): 04016068. doi: 10.1061/(ASCE)GM.1943-5622.0000742
    [16]
    张志红, 韩林, 田改垒. 饱和土体热-水-力-化全耦合一维溶质运移模型[J]. 东南大学学报(自然科学版), 2019, 49(6): 1178-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906022.htm

    ZHANG Zhihong, HAN Lin, TIAN Gailei. One-dimensional transport model for solute with thermo-hydro-mechanical-chemical soupling in saturated soil[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(6): 1178-1186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906022.htm
    [17]
    田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278-287. doi: 10.11779/CJGE202202009

    TIAN Gailei, ZHANG Zhihong. Coupled model for contaminant diffusion, osmosis and consolidation in soil considering thermal effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278-287. (in Chinese) doi: 10.11779/CJGE202202009
    [18]
    XIE H J, CHEN Y M, LOU Z H. An analytical solution to contaminant transport through composite liners with geomembrane defects[J]. Science China Technological Sciences, 2010, 53(5): 1424-1433. doi: 10.1007/s11431-010-0111-7
    [19]
    ROWE R K. Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste[C]//Proceedings of the Sixth International Conference on Geosynthetics. Atlanta, 1998.
    [20]
    KALBE U, MÜLLER W W, BERGER W, et al. Transport of organic contaminants within composite liner systems[J]. Applied Clay Science, 2002, 21(1/2): 67-76.
    [21]
    ROWE R K. Long-term performance of contaminant barrier systems[J]. Géotechnique, 2005, 55(9): 631-678. doi: 10.1680/geot.2005.55.9.631
    [22]
    XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research, 2015, 22(4): 2824-2836. doi: 10.1007/s11356-014-3565-5
    [23]
    XIE H J, CHEN Y M, KE H, et al. Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants[J]. Journal of Environmental Sciences, 2009, 21(4): 552-560. doi: 10.1016/S1001-0742(08)62307-4
    [24]
    XIE H, ZHANG C H, FENG S J, et al. Analytical model for degradable organic contaminant transport through a GMB/GCL/AL system[J]. Journal of Environmental Engineering, 2018, 144: 04018006. doi: 10.1061/(ASCE)EE.1943-7870.0001338
    [25]
    张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018.

    ZHANG Chunhua. Mechanisms for Contaminant Transport in Landfill Composite Liners under Thermal Effect and its Optimization Design Method[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [26]
    WU X, SHI J Y, HE J. Analytical solutions for diffusion of organic contaminant through GCL triple-layer composite liner considering degradation in liner[J]. Environmental Earth Sciences, 2016, 75(20): 1-18.
    [27]
    LIU C L, ZHANG F G, ZHANG Y, et al. Experimental and numerical study of pollution process in an aquifer in relation to a garbage dump field[J]. Environmental Geology, 2005, 48(8): 1107-1115. doi: 10.1007/s00254-005-0052-9
    [28]
    DU Y J, SHEN S L, LIU S Y, et al. Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems[J]. Geotextiles and Geomembranes, 2009, 27(3): 232-239. doi: 10.1016/j.geotexmem.2008.11.007
    [29]
    XIE H J, CHEN Y M, ZHAN L T, et al. Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system[J]. Journal of Zhejiang University-SCIENCE A, 2009, 10(3): 439-449. doi: 10.1631/jzus.A0820299
    [30]
    ZHAN T L T, CHEN Y M, LING W A. Shear strength characterization of municipal solid waste at the Suzhou landfill, China[J]. Engineering Geology, 2008, 97(3/4): 97-111.
    [31]
    CHAPPEL M J, BRACHMAN R W I, TAKE W A, et al. Large-scale quantification of wrinkles in a smooth black HDPE geomembrane[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 671-679. doi: 10.1061/(ASCE)GT.1943-5606.0000643
    [32]
    ROWE R K, CHAPPEL M J, BRACHMAN R W I, et al. Field study of wrinkles in a geomembrane at a composite liner test site[J]. Canadian Geotechnical Journal, 2012, 49(10): 1196-1211. doi: 10.1139/t2012-083
    [33]
    徐亚, 能昌信, 刘玉强, 等. 垃圾填埋场HDPE膜漏洞密度及其影响因素的统计分析[J]. 环境工程学报, 2015, 9(9): 4558-4564. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm

    XU Ya, NAI Changxin, LIU Yuqiang, et al. Statistical analysis on density of accidental-hole in landfill liner system[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4558-4564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm
  • Related Articles

    [1]Study on swelling deformation of GMZ bentonite infiltrated with salt solution considering temperature effects[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240803
    [2]Effect of temperature on swelling behaviors of compacted bentonite in an annular technological void[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240956
    [3]MA Jing, CHEN Yonggui, LIU Cong, YE Weimin, WANG Qiong. Research progress in mechanisms of swelling pressures of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2042-2051. DOI: 10.11779/CJGE20220911
    [4]ZHANG Si-hua, YUAN Chong-xuan, LIU Yun-long, XIA Yan-yan. Review on researches on horizontal swelling pressure of expansive soils after humidification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 143-147. DOI: 10.11779/CJGE2022S1026
    [5]ZHOU Yin-kang, YAN Chang-hong, ZHENG Jun, XIE Sheng-hua, XIANG Guo-sheng. Mesoscale model for thermal conductivity of compacted dual-porosity bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1352-1359. DOI: 10.11779/CJGE202107022
    [6]YE Wei-min, LIU Zhang-rong, CUI Yu-jun, ZHANG Zhao, WANG Qiong, CHEN Yong-gui. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. DOI: 10.11779/CJGE202001003
    [7]CHEN Yong-gui, LI Quan, JIA Ling-yan, YE Wei-min, CUI Yu-jun, CHEN Bao. Decay characteristics of swelling pressure of compacted bentonite under salinity gradient cycling[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 872-879. DOI: 10.11779/CJGE201805012
    [8]LAI Xiao-ling, YE Wei-min, LIU Yi, CHEN Bao, WANG Qiong. Experimental investigation on ageing effects on swelling pressure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 574-579. DOI: 10.11779/CJGE201403022
    [9]QIN Bing, CHEN Zhenghan, LIU Yuemiao, WANG Ju. Characteristics of 3D swelling pressure of GMZ001 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 756-763.
    [10]QIN Bing, CHEN Zhenghan, LIU Yuemiao, WANG Ju. Swelling-shrinkage behaviour of Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1005-1010.

Catalog

    Article views (263) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return