Citation: | ZHOU Yin-kang, YAN Chang-hong, ZHENG Jun, XIE Sheng-hua, XIANG Guo-sheng. Mesoscale model for thermal conductivity of compacted dual-porosity bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1352-1359. DOI: 10.11779/CJGE202107022 |
[1] |
王驹. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术, 2019, 53(10): 2072-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htm
WANG Ju. Progress of geological disposal of high-level radioactive waste in China in the 21st century[J]. Atomic Energy Science and Technology, 2019, 53(10): 2072-2082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htm
|
[2] |
陈宝, 张会新, 陈萍. 高碱溶液对高庙子膨润土侵蚀作用的研究[J]. 岩土工程学报, 2013, 35(1): 181-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301022.htm
CHEN Bao, ZHANG Hui-xin, CHEN Ping. Erosion effect of hyper-alkaline solution on gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 181-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301022.htm
|
[3] |
刘月妙, 蔡美峰, 王驹. 内蒙古高庙子钠基膨润土导热性能研究. 全国岩土与工程学术大会[C]//全国岩土与工程学术大会. 2006, 武汉.
LIU Yue-miao, CAI Mei-feng, WANG Ju. On the thermal conductivity of GMZ bentonite[C]//Proceedings of Rock and Engineering Conference. 2006, Wuhan. (in Chinese)
|
[4] |
叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
YE Wei-min, WANG Qiong, PAN Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821-826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
|
[5] |
KAHR G, MÜLLER-VONMOOS M. Wärmeleitfähigkeit von Bentonite MX80 und von Montigel nach der Heizdrahtmethode[R]. Zurich: Swiss National Cooperative for the Disposal of Radioactive Waste, NAGRA Technisher Bericht, 1982.
|
[6] |
KNUTSSON S. On the Thermal Conductivity and Thermal Diffusivity of Highly Compacted Bentonite[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 1983.
|
[7] |
SAKASHITA H, KUMADA T. Heat transfer model for predicting thermal conductivity of highly compacted bentonite[J]. Journal of the Atomic Energy Society of Japan, 1998, 40(3): 235-240.
|
[8] |
ROMERO E. A microstructural insight into compacted clayey soils and their hydraulic properties[J]. Engineering Geology, 2013, 165(20): 3-19.
|
[9] |
叶为民, 赖小玲, 刘毅, 等. 高庙子膨润土微观结构时效性试验研究[J]. 岩土工程学报, 2013, 35(12): 2255-2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm
YE Wei-min, LAI Xiao-ling, LIU Yi, et al. Experimental study on ageing effects on microstructure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2255-2261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm
|
[10] |
LLORET A, VILLAR M V. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite[J]. Physics and Chemistry of the Earth, 2007, 32(8): 701-715.
|
[11] |
TANG A M, CUI Y J, LE T T. A study on the thermal conductivity of compacted bentonites[J]. Applied Clay Science, 2008, 41(3/4): 181-189.
|
[12] |
CHEN Y F, WANG M, ZHOU S, et al. An effective thermal conductivity model for unsaturated compacted bentonites with consideration of bimodal shape of pore size distribution[J]. Science China Technological Sciences, 2015, 58(2): 369-380. doi: 10.1007/s11431-014-5738-3
|
[13] |
CAI S S, ZHANG B X, CUI T F, et al. Mesoscopic study of the effective thermal conductivity of dry and moist soil[J]. International Journal of Refrigeration, 2019, 98(6): 171-181.
|
[14] |
周殷康, 阎长虹, 谢胜华, 等. 基于细观模拟的软土导热系数数值预测模型[J]. 工程地质学报, 2019, 27(5): 1070-1078. doi: 10.13544/j.cnki.jeg.2019078
ZHOU Yin-kang, YAN Chang-hong, XIE Sheng-hua, et al. A numerical model for thermal conductivity of soft soils based on mesoscopic simulation[J]. Journal of Engineering Geology, 2019, 27(5): 1070-1078. (in Chinese) doi: 10.13544/j.cnki.jeg.2019078
|
[15] |
JIANG Z, DIJKE M I J, WU K, et al. Stochastic pore network generation from 3D rock images[J]. Transport in Porous Media, 2012, 94(2): 571-593. doi: 10.1007/s11242-011-9792-z
|
[16] |
JIANG Z, VAN DIJKE M I J, SORBIE K S, et al. Representation of multiscale heterogeneity via multiscale pore networks[J]. Water Resources Research, 2013, 49(9): 5437-5449. doi: 10.1002/wrcr.20304
|
[17] |
徐云山, 孙德安, 曾召田, 等. 膨润土热传导性能时效性试验研究[J]. 岩土力学, 2019, 40(11): 4324-4330. doi: 10.16285/j.rsm.2018.1707
XU Yun-shan, SUN De-an, ZENG Zhao-tian, et al. Experimental study on ageing effect on bentonite thermal conductivity[J]. Rock and Soil Mechanics, 2019, 40(11): 4324-4330. (in Chinese) doi: 10.16285/j.rsm.2018.1707
|
[18] |
DELAGE P, MARCIAL D, CUI Y J, et al. Ageing effects in a compacted bentonite: a microstructure approach[J]. Géotechnique, 2006, 56(5): 291-304. doi: 10.1680/geot.2006.56.5.291
|
[19] |
CHEN Y F, ZHOU S, HU R, et al. A homogenization-based model for estimating effective thermal conductivity of unsaturated compacted bentonites[J]. International Journal of Heat and Mass Transfer, 2015, 83: 731-740. doi: 10.1016/j.ijheatmasstransfer.2014.12.053
|
[20] |
WANG M R, WANG J K, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, 2007, 75(3): 036702. doi: 10.1103/PhysRevE.75.036702
|
[21] |
WANG M R, PAN N. Predictions of effective physical properties of complex multiphase materials[J]. Materials Science and Engineering: R: Reports, 2008, 63(1): 1-30. doi: 10.1016/j.mser.2008.07.001
|
[22] |
VILLAR M V. Caracterización termo-hidro-mecánica de una bentonita de Cabo de Gata[D]. Madrid: Universidad Complutense de Madrid, 2000.
|
[23] |
LEE J O, CHOI H, LEE J Y. Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository[J]. Annals of Nuclear Energy, 2016, 94: 848-855. doi: 10.1016/j.anucene.2016.04.053
|
[24] |
OULD-LAHOUCINE C, SAKASHITA H, KUMADA T. Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it[J]. Nuclear Engineering and Design, 2002, 216(1/2/3): 1-11.
|
[25] |
NAKASHIMA Y. Nuclear magnetic resonance properties of water-rich gels of kunigel-V1 bentonite[J]. Journal of Nuclear Science and Technology, 2004, 41(10): 981-992. doi: 10.1080/18811248.2004.9726321
|
[26] |
TANG A M, CUI Y J. Modelling the thermo-mechanical volume change behaviour of compacted expansive clays[J]. Géotechnique, 2009, 59(3): 185-195. doi: 10.1680/geot.2009.59.3.185
|
[27] |
徐云山, 曾召田, 吕海波, 等. 高温下红黏土热导率的变化规律试验研究[J]. 工程地质学报, 2017, 25(6): 1465-1473. doi: 10.13544/j.cnki.jeg.2017.06.009
XU Yun-shan, ZENG Zhao-tian, LÜ Hai-bo, et al. Experimental study on variation of thermal conductivity of red clay at high temperature[J]. Journal of Engineering Geology, 2017, 25(6): 1465-1473. (in Chinese) doi: 10.13544/j.cnki.jeg.2017.06.009
|
[1] | ZHENG Yingren, ZHANG Jinliang, YIN Dewen, SHAO Ying, SU Kai, WU Hao, ZHANG Zhipei. Critical sliding surface theorem and numerical solution method based on lower bound model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 438-442. DOI: 10.11779/CJGE20230988 |
[2] | LIU Yang, ZHENG Jun-jie, ZENGYan. Bearing capacity of karst roof based on lower bound method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 181-184. DOI: 10.11779/CJGE2019S2046 |
[3] | HE Chun-bao, WANG Lin-bin, LI Gao-yang. Stresses induced by vertical rectangular uniform loads within ground based on Mindlin solution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 533-539. DOI: 10.11779/CJGE201803018 |
[4] | GUO Biao, GONG Xiao-nan, LI Ya-jun. Analytical solution for consolidation of stone column-reinforced foundations considering radical and vertical flows in columns[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1485-1492. DOI: 10.11779/CJGE201708016 |
[5] | YANG Ren-shu, CHEN Jun, LIU Dian-shu. Limit analysis solution of dynamic Brazilian tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1156-1160. DOI: 10.11779/CJGE201706024 |
[6] | HAN Chang-yu, XIA Xiao-he, WANG Jian-hua. Upper bound solutions of ultimate bearing capacity of curved footing[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 230-236. |
[7] | FANG Yushu. The lowest solution of slice method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 331-335. |
[8] | FAN Pengxian, ZHU Dayong, GUO Zhikun, CHEN Wanxiang. The least upper-bound solution for safety factor of slope by dynamic programming[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 467-470. |
[9] | XIE Xinyu, ZHANG Jifa, PAN Linyou, ZENG Guoxi. Shockwave model and Lagrangian series solution of quiescent sedimentation[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 633-635. |
[10] | YANG Xiaoli, LI Liang, LIU Baochen. Large-scale optimization and its application to upper bound theorem using kinematical element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 602-605. |
1. |
王春荣,周福平,夏尔冬,高浩. 基于改进四阶矩的齿轮可靠性研究. 机械强度. 2024(03): 636-642 .
![]() |