• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Yin-kang, YAN Chang-hong, ZHENG Jun, XIE Sheng-hua, XIANG Guo-sheng. Mesoscale model for thermal conductivity of compacted dual-porosity bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1352-1359. DOI: 10.11779/CJGE202107022
Citation: ZHOU Yin-kang, YAN Chang-hong, ZHENG Jun, XIE Sheng-hua, XIANG Guo-sheng. Mesoscale model for thermal conductivity of compacted dual-porosity bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1352-1359. DOI: 10.11779/CJGE202107022

Mesoscale model for thermal conductivity of compacted dual-porosity bentonite

More Information
  • Received Date: July 16, 2020
  • Available Online: December 02, 2022
  • The thermal conductivity of compacted bentonite is very crucial in evaluating the safety of heat dissipation and in calculating the temperature distribution of radioactive waste repository. An accurate predictive model is of great significance to the calculation of their thermal conductivity under various conditions. A mesoscale model is proposed for the thermal conductivity of compacted dual-porosity bentonite by numerical simulation. The thermal conductivity of 160 measured samples is selected and compared with their simulated one for five typical kinds of compacted bentonite with different dry densities and water contents. The results show that the most predictive values are within ±20% range of the measured ones, which verifies the reliability of the model effectively. The results in this study provide a new approach and/or strategy to predict the thermal conductivity of the compacted dual-porosity bentonite.
  • [1]
    王驹. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术, 2019, 53(10): 2072-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htm

    WANG Ju. Progress of geological disposal of high-level radioactive waste in China in the 21st century[J]. Atomic Energy Science and Technology, 2019, 53(10): 2072-2082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htm
    [2]
    陈宝, 张会新, 陈萍. 高碱溶液对高庙子膨润土侵蚀作用的研究[J]. 岩土工程学报, 2013, 35(1): 181-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301022.htm

    CHEN Bao, ZHANG Hui-xin, CHEN Ping. Erosion effect of hyper-alkaline solution on gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 181-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301022.htm
    [3]
    刘月妙, 蔡美峰, 王驹. 内蒙古高庙子钠基膨润土导热性能研究. 全国岩土与工程学术大会[C]//全国岩土与工程学术大会. 2006, 武汉.

    LIU Yue-miao, CAI Mei-feng, WANG Ju. On the thermal conductivity of GMZ bentonite[C]//Proceedings of Rock and Engineering Conference. 2006, Wuhan. (in Chinese)
    [4]
    叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm

    YE Wei-min, WANG Qiong, PAN Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821-826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
    [5]
    KAHR G, MÜLLER-VONMOOS M. Wärmeleitfähigkeit von Bentonite MX80 und von Montigel nach der Heizdrahtmethode[R]. Zurich: Swiss National Cooperative for the Disposal of Radioactive Waste, NAGRA Technisher Bericht, 1982.
    [6]
    KNUTSSON S. On the Thermal Conductivity and Thermal Diffusivity of Highly Compacted Bentonite[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 1983.
    [7]
    SAKASHITA H, KUMADA T. Heat transfer model for predicting thermal conductivity of highly compacted bentonite[J]. Journal of the Atomic Energy Society of Japan, 1998, 40(3): 235-240.
    [8]
    ROMERO E. A microstructural insight into compacted clayey soils and their hydraulic properties[J]. Engineering Geology, 2013, 165(20): 3-19.
    [9]
    叶为民, 赖小玲, 刘毅, 等. 高庙子膨润土微观结构时效性试验研究[J]. 岩土工程学报, 2013, 35(12): 2255-2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm

    YE Wei-min, LAI Xiao-ling, LIU Yi, et al. Experimental study on ageing effects on microstructure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2255-2261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm
    [10]
    LLORET A, VILLAR M V. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite[J]. Physics and Chemistry of the Earth, 2007, 32(8): 701-715.
    [11]
    TANG A M, CUI Y J, LE T T. A study on the thermal conductivity of compacted bentonites[J]. Applied Clay Science, 2008, 41(3/4): 181-189.
    [12]
    CHEN Y F, WANG M, ZHOU S, et al. An effective thermal conductivity model for unsaturated compacted bentonites with consideration of bimodal shape of pore size distribution[J]. Science China Technological Sciences, 2015, 58(2): 369-380. doi: 10.1007/s11431-014-5738-3
    [13]
    CAI S S, ZHANG B X, CUI T F, et al. Mesoscopic study of the effective thermal conductivity of dry and moist soil[J]. International Journal of Refrigeration, 2019, 98(6): 171-181.
    [14]
    周殷康, 阎长虹, 谢胜华, 等. 基于细观模拟的软土导热系数数值预测模型[J]. 工程地质学报, 2019, 27(5): 1070-1078. doi: 10.13544/j.cnki.jeg.2019078

    ZHOU Yin-kang, YAN Chang-hong, XIE Sheng-hua, et al. A numerical model for thermal conductivity of soft soils based on mesoscopic simulation[J]. Journal of Engineering Geology, 2019, 27(5): 1070-1078. (in Chinese) doi: 10.13544/j.cnki.jeg.2019078
    [15]
    JIANG Z, DIJKE M I J, WU K, et al. Stochastic pore network generation from 3D rock images[J]. Transport in Porous Media, 2012, 94(2): 571-593. doi: 10.1007/s11242-011-9792-z
    [16]
    JIANG Z, VAN DIJKE M I J, SORBIE K S, et al. Representation of multiscale heterogeneity via multiscale pore networks[J]. Water Resources Research, 2013, 49(9): 5437-5449. doi: 10.1002/wrcr.20304
    [17]
    徐云山, 孙德安, 曾召田, 等. 膨润土热传导性能时效性试验研究[J]. 岩土力学, 2019, 40(11): 4324-4330. doi: 10.16285/j.rsm.2018.1707

    XU Yun-shan, SUN De-an, ZENG Zhao-tian, et al. Experimental study on ageing effect on bentonite thermal conductivity[J]. Rock and Soil Mechanics, 2019, 40(11): 4324-4330. (in Chinese) doi: 10.16285/j.rsm.2018.1707
    [18]
    DELAGE P, MARCIAL D, CUI Y J, et al. Ageing effects in a compacted bentonite: a microstructure approach[J]. Géotechnique, 2006, 56(5): 291-304. doi: 10.1680/geot.2006.56.5.291
    [19]
    CHEN Y F, ZHOU S, HU R, et al. A homogenization-based model for estimating effective thermal conductivity of unsaturated compacted bentonites[J]. International Journal of Heat and Mass Transfer, 2015, 83: 731-740. doi: 10.1016/j.ijheatmasstransfer.2014.12.053
    [20]
    WANG M R, WANG J K, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, 2007, 75(3): 036702. doi: 10.1103/PhysRevE.75.036702
    [21]
    WANG M R, PAN N. Predictions of effective physical properties of complex multiphase materials[J]. Materials Science and Engineering: R: Reports, 2008, 63(1): 1-30. doi: 10.1016/j.mser.2008.07.001
    [22]
    VILLAR M V. Caracterización termo-hidro-mecánica de una bentonita de Cabo de Gata[D]. Madrid: Universidad Complutense de Madrid, 2000.
    [23]
    LEE J O, CHOI H, LEE J Y. Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository[J]. Annals of Nuclear Energy, 2016, 94: 848-855. doi: 10.1016/j.anucene.2016.04.053
    [24]
    OULD-LAHOUCINE C, SAKASHITA H, KUMADA T. Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it[J]. Nuclear Engineering and Design, 2002, 216(1/2/3): 1-11.
    [25]
    NAKASHIMA Y. Nuclear magnetic resonance properties of water-rich gels of kunigel-V1 bentonite[J]. Journal of Nuclear Science and Technology, 2004, 41(10): 981-992. doi: 10.1080/18811248.2004.9726321
    [26]
    TANG A M, CUI Y J. Modelling the thermo-mechanical volume change behaviour of compacted expansive clays[J]. Géotechnique, 2009, 59(3): 185-195. doi: 10.1680/geot.2009.59.3.185
    [27]
    徐云山, 曾召田, 吕海波, 等. 高温下红黏土热导率的变化规律试验研究[J]. 工程地质学报, 2017, 25(6): 1465-1473. doi: 10.13544/j.cnki.jeg.2017.06.009

    XU Yun-shan, ZENG Zhao-tian, LÜ Hai-bo, et al. Experimental study on variation of thermal conductivity of red clay at high temperature[J]. Journal of Engineering Geology, 2017, 25(6): 1465-1473. (in Chinese) doi: 10.13544/j.cnki.jeg.2017.06.009
  • Related Articles

    [1]ZHENG Yingren, ZHANG Jinliang, YIN Dewen, SHAO Ying, SU Kai, WU Hao, ZHANG Zhipei. Critical sliding surface theorem and numerical solution method based on lower bound model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 438-442. DOI: 10.11779/CJGE20230988
    [2]LIU Yang, ZHENG Jun-jie, ZENGYan. Bearing capacity of karst roof based on lower bound method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 181-184. DOI: 10.11779/CJGE2019S2046
    [3]HE Chun-bao, WANG Lin-bin, LI Gao-yang. Stresses induced by vertical rectangular uniform loads within ground based on Mindlin solution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 533-539. DOI: 10.11779/CJGE201803018
    [4]GUO Biao, GONG Xiao-nan, LI Ya-jun. Analytical solution for consolidation of stone column-reinforced foundations considering radical and vertical flows in columns[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1485-1492. DOI: 10.11779/CJGE201708016
    [5]YANG Ren-shu, CHEN Jun, LIU Dian-shu. Limit analysis solution of dynamic Brazilian tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1156-1160. DOI: 10.11779/CJGE201706024
    [6]HAN Chang-yu, XIA Xiao-he, WANG Jian-hua. Upper bound solutions of ultimate bearing capacity of curved footing[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 230-236.
    [7]FANG Yushu. The lowest solution of slice method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 331-335.
    [8]FAN Pengxian, ZHU Dayong, GUO Zhikun, CHEN Wanxiang. The least upper-bound solution for safety factor of slope by dynamic programming[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 467-470.
    [9]XIE Xinyu, ZHANG Jifa, PAN Linyou, ZENG Guoxi. Shockwave model and Lagrangian series solution of quiescent sedimentation[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 633-635.
    [10]YANG Xiaoli, LI Liang, LIU Baochen. Large-scale optimization and its application to upper bound theorem using kinematical element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 602-605.
  • Cited by

    Periodical cited type(1)

    1. 王春荣,周福平,夏尔冬,高浩. 基于改进四阶矩的齿轮可靠性研究. 机械强度. 2024(03): 636-642 .

    Other cited types(6)

Catalog

    Article views (253) PDF downloads (116) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return