• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Jing, CHEN Yonggui, LIU Cong, YE Weimin, WANG Qiong. Research progress in mechanisms of swelling pressures of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2042-2051. DOI: 10.11779/CJGE20220911
Citation: MA Jing, CHEN Yonggui, LIU Cong, YE Weimin, WANG Qiong. Research progress in mechanisms of swelling pressures of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2042-2051. DOI: 10.11779/CJGE20220911

Research progress in mechanisms of swelling pressures of compacted bentonite under chemical conditions

More Information
  • Received Date: July 24, 2022
  • Available Online: March 09, 2023
  • Chemical compositions affect the long-term stabilization of the swelling properties of bentonites, which is significant to the safety of deep geological repositories. To review the chemical effects on the swelling pressures of bentonites, the latest advances in the hydration tests, microscopic mechanisms and numerical models are summarized. The results show that the swelling process of the compacted bentonite is influenced by the coupling of chemical solutions (ion type, concentration) and bentonite properties (exchangeable cation, compacted dry density). The salinity and cation exchange reaction work on the three main hydration mechanisms, including the crystalline swelling, breakup of quasicrystals, and diffuse double-layer swelling. Compared to the hydration swelling models, the elastoplastic constitutive models are more applicated and accurate, which quantify the salinity by osmotic suction, and the cation exchange reaction by stiffness of crystal layers. The deficiencies of the current mechanisms and model studies include the failure to determine the boundary between crystalline and diffuse double-layer swelling, due to the special structure of bentonites (unit layers, quasicrystals, and aggregates), the failure to establish the relationship between microscale and macroscale based on the theories of hydration mechanisms, and the neglecting of the synergies between multi-field conditions and C-H-M behaviors of bentonites in the engineering scale. Thus, further multi-scale systematic tests, multi-field coupling theories and dynamic co-evolution models are expected.
  • [1]
    王驹, 苏锐, 陈亮, 等. 论中国高放废物地质处置地下实验室发展战略[C]//第七届废物地下处置学术研讨会暨国际放射性废物处置研讨会, 北京, 2018: 10-17.

    WANG Ju, SU Rui, CHEN Liang, et al. The development strategy of the underground research laboratory for geological disposal of high level radioactive waste in China[C]//7th Symposium on Underground Waste Disposal. Beijing, 2018: 10-17. (In Chinese)
    [2]
    IAEA. Disposal of Radioactive Waste: Specific Safety Requirements, IAEA Safety Standards Series No. SSR-5[R]. Vienna, IAEA, 2011.
    [3]
    陈永贵, 贾灵艳, 叶为民, 等. 施工接缝对缓冲材料水-力特性影响研究进展[J]. 岩土工程学报, 2017, 39(1): 138-147. doi: 10.11779/CJGE201701012

    CHEN Yonggui, JIA Lingyan, YE Weimin, et al. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 138-147. (in Chinese) doi: 10.11779/CJGE201701012
    [4]
    SUN Z, CHEN Y G, CUI Y J, et al. Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi(GMZ) bentonite: The Beishan site case, Gansu, China[J]. Engineering Geology, 2018, 244: 66-74. doi: 10.1016/j.enggeo.2018.08.002
    [5]
    苏薇. 考虑膜效应的GMZ膨润土及其混合物水-化屏障性能研究[D]. 上海: 同济大学, 2018.

    SU Wei, Study on the Hydro-Chemical Performances of GMZ Bentonite Based Materials with Consideration of Membrane Effects[D]. Shanghai: Tongji University, 2018. (in Chinese)
    [6]
    MOKNI N, BARNICHON J D. SEALEX in-situ experiments-performance tests of repository seals: experimental observations and modelling[C]//3rd European Conference on Unsaturated Soils, Paris, 2016: 04006.
    [7]
    WANG Q. Hydro-Mechanical Behaviour of Bentonite-Based Materials Used for High-Level Radioactive Waste Disposal[D]. Paris: Ecole des Ponts ParisTech, 2012.
    [8]
    VILLAR M V, IGLESIAS R J, GUTIERREZ-ALVAREZ C, et al. Hydraulic and mechanical properties of compacted bentonite after 18 years in barrier conditions[J]. Applied Clay Science, 2018, 160: 49-57. doi: 10.1016/j.clay.2017.12.045
    [9]
    ENRESA. FEBEX Full-Scale Engineered Barriers Experiment in: Updated Final Report 1994-2004[R]. Madrid: Publicación Técnica ENRESA, 2006.
    [10]
    KIM M, LEE S, CHEON E, et al. Thermochemical changes on swelling pressure of compacted bentonite[J]. Annals of Nuclear Energy, 2021, 151: 107882. doi: 10.1016/j.anucene.2020.107882
    [11]
    KIM S S, BAIK M H, KANG K C. Solubility of neptunium oxide in the KURT (KAERI Underground Research Tunnel) groundwater[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 280(3): 577-583. doi: 10.1007/s10967-009-7481-y
    [12]
    KOMINE H, YASUHARA K, MURAKAMI S. Swelling characteristics of bentonites in artificial seawater[J]. Canadian Geotechnical Journal, 2009, 46(2): 177-189. doi: 10.1139/T08-120
    [13]
    LIU Y M, CAO S F. THM evolution of bentonite in China-Mock-Up test for high-level radioactive waste disposal in China[C]//2nd Pan-American Conference on Unsaturated Soils, Dallas, 2018: 403-412.
    [14]
    LLORET A, VILLAR M V, SÁNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27-40. doi: 10.1680/geot.2003.53.1.27
    [15]
    SCHANZ T, AL-BADRAN Y. Swelling pressure characteristics of compacted Chinese Gaomiaozi bentonite GMZ01[J]. Soils and Foundations, 2014, 54(4): 748-759. doi: 10.1016/j.sandf.2014.06.026
    [16]
    KOMINE H, OGATA N. Experimental study on swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal, 1994, 31(4): 478-490. doi: 10.1139/t94-057
    [17]
    VILLAR M V, GÓMEZ-ESPINA R, LLORET A. Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 71-78.
    [18]
    叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. doi: 10.11779/CJGE202001003

    YE Weimin, LIU Zhangrong, CUI Yujun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. (in Chinese) doi: 10.11779/CJGE202001003
    [19]
    CHEN Y G, DONG X X, ZHANG X D, et al. Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite[J]. Applied Clay Science, 2018, 166: 318-326. doi: 10.1016/j.clay.2018.10.001
    [20]
    SUN D A, ZHANG L, LI J, et al. Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution[J]. Applied Clay Science, 2015, 105: 207-216.
    [21]
    KARNLAND O, OLSSON S, NIELSSON U. Mineralogy and Sealing Properties of Various Bentonites and Smectite-Rich Clay Materials[R]. Stockholm: SKB, 2006.
    [22]
    LEE J O, LIM J G, KANG I M, et al. Swelling pressures of compacted Ca-bentonite[J]. Engineering Geology, 2012, 129: 20-26.
    [23]
    JADDA K, BAG R. Variation of swelling pressure, consolidation characteristics and hydraulic conductivity of two Indian bentonites due to electrolyte concentration[J]. Engineering Geology, 2020, 272: 105637. doi: 10.1016/j.enggeo.2020.105637
    [24]
    LI Z, SU G, ZHENG Q, et al. A dual-porosity model for the study of chemical effects on the swelling behaviour of MX-80 bentonite[J]. Acta Geotechnica, 2020, 15(3): 635-653. doi: 10.1007/s11440-019-00762-5
    [25]
    ZHU C M, YE W M, CHEN Y G, et al. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Engineering Geology, 2013, 166: 74-80. doi: 10.1016/j.enggeo.2013.09.001
    [26]
    LANG L Z, TRIPATHY S, BAILLE W, et al. Linkage between swelling pressure, total suction of saturated bentonites and suction of saturating aqueous solutions[J]. Applied Clay Science, 2019, 171: 82-91. doi: 10.1016/j.clay.2019.02.007
    [27]
    JENNI A, MäDER U. Coupling of chemical and hydromechanical properties in bentonite[J]. Applied Geochemistry, 2018, 97: 147-156. doi: 10.1016/j.apgeochem.2018.08.013
    [28]
    CHEN Y G, DONG X X, ZHANG X D, et al. Cyclic thermal and saline effects on the swelling pressure of densely compacted Gaomiaozi bentonite[J]. Engineering Geology, 2019, 255: 37-47. doi: 10.1016/j.enggeo.2019.04.016
    [29]
    GUIMARAES L D, GENS A, SANCHEZ M, et al. A chemo-mechanical constitutive model accounting for cation exchange in expansive clays[J]. Geótechnique, 2013, 63(3): 221-234. doi: 10.1680/geot.SIP13.P.012
    [30]
    MATA C. Hydraulic Behaviour of Bentonite Based Mixtures in Engineered Barriers: the Backfill and Plug Test at the Ӓspö HRL (Sweden)[D]. Barcelona: Technical University of Catalonia, 2003.
    [31]
    HE Y, YE W M, CHEN Y G, et al. Effects of K+ solutions on swelling behavior of compacted GMZ bentonite[J]. Engineering Geology, 2019, 249: 241-248. doi: 10.1016/j.enggeo.2018.12.020
    [32]
    SHEHATA A, FALL M, DETELLIER C, et al. Effect of groundwater chemistry and temperature on swelling and microstructural properties of sand-bentonite for barriers of radioactive waste repositories[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1857-1873. doi: 10.1007/s10064-020-02020-5
    [33]
    XIANG G, YE W, XU Y, et al. Swelling deformation of Na-bentonite in solutions containing different cations[J]. Engineering Geology, 2020, 277: 105757. doi: 10.1016/j.enggeo.2020.105757
    [34]
    PUSCH R, YONG R N. Microstructure of smectite clays and engineering performance[M]. London: Taylor & Francis, 2006.
    [35]
    MELKIOR T, GAUCHER E C, BROUARD C, et al. Na+ and HTO diffusion in compacted bentonite: effect of surface chemistry and related texture[J]. Journal of Hydrology, 2009, 370(1/2/3/4): 9-20.
    [36]
    HOLMBOE M, WOLD S, JONSSON M. Porosity investigation of compacted bentonite using XRD profile modeling[J]. Journal of Contaminant Hydrology, 2012, 128(1/2/3/4): 19-32.
    [37]
    SHEN X Y, BOURG I C. Molecular dynamics simulations of the colloidal interaction between smectite clay nanoparticles in liquid water[J]. Journal of Colloid and Interface Science, 2021, 584: 610-621. doi: 10.1016/j.jcis.2020.10.029
    [38]
    FERRAGE E. Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives[J]. Clays and Clay Minerals, 2016, 64(4): 348-373. doi: 10.1346/CCMN.2016.0640401
    [39]
    RAO S M, THYAGARAJ T, RAO P R. Crystalline and osmotic swelling of an expansive clay inundated with sodium chloride solutions[J]. Geotechnical and Geological Engineering, 2013, 31(4): 1399-1404. doi: 10.1007/s10706-013-9629-3
    [40]
    ZHANG T, DENG Y, CUI Y, et al. Porewater salinity effect on flocculation and desiccation cracking behaviour of kaolin and bentonite considering working condition[J]. Engineering Geology, 2019, 251: 11-23. doi: 10.1016/j.enggeo.2019.02.007
    [41]
    LAIRD D A. Influence of layer charge on swelling of smectites[J]. Applied Clay Science, 2006, 34(1/2/3/4): 74-87.
    [42]
    DOR M, LEVI-KALISMAN Y, DAY-STIRRAT R J, et al. Assembly of clay mineral platelets, tactoids, and aggregates: effect of mineral structure and solution salinity[J]. Journal of Colloid and Interface Science, 2020, 566: 163-170. doi: 10.1016/j.jcis.2020.01.084
    [43]
    SUN L L, LING C Y, LAVIKAINEN L P, et al. Influence of layer charge and charge location on the swelling pressure of dioctahedral smectites[J]. Chemical Physics, 2016, 473: 40-45. doi: 10.1016/j.chemphys.2016.05.002
    [44]
    TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Canadian Geotechnical Journal, 2004, 41(3): 437-450. doi: 10.1139/t03-096
    [45]
    KOMINE H, OGATA N. New equations for swelling characteristics of bentonite-based buffer materials[J]. Canadian Geotechnical Journal, 2003, 40(2): 460-475. doi: 10.1139/t02-115
    [46]
    LAIRD D A. Model for crystalline swelling of 2: 1 phyllosilicates[J]. Clays & Clay Minerals, 1996, 44(4): 553-559.
    [47]
    LIU L C. Prediction of swelling pressures of different types of bentonite in dilute solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434: 303-318.
    [48]
    蔡叶青, 陈永贵, 叶为民, 等. 处置库近场膨润土胶体产生及稳定性研究进展[J]. 岩土工程学报, 2020, 42(11): 1996-2005. doi: 10.11779/CJGE202011004

    CAI Yeqing, CHEN Yonggui, YE Weimin, et al. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. (in Chinese) doi: 10.11779/CJGE202011004
    [49]
    DELLA VECCHIA G, MUSSO G. Some remarks on single- and double-porosity modeling of coupled chemo-hydro-mechanical processes in clays[J]. Soils and Foundations, 2016, 56(5): 779-789.
    [50]
    IDIART A, LAVINA M, COCHEPIN B, et al. Hydro-chemo-mechanical modelling of long-term evolution of bentonite swelling[J]. Applied Clay Science, 2020, 195: 105717.
    [51]
    NAVARRO V, ASENSIO L, GHARBIEH H, et al. A triple porosity hydro-mechanical model for MX-80 bentonite pellet mixtures[J]. Engineering Geology, 2020, 265: 105311.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return