Citation: | MA Jing, CHEN Yonggui, LIU Cong, YE Weimin, WANG Qiong. Research progress in mechanisms of swelling pressures of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2042-2051. DOI: 10.11779/CJGE20220911 |
[1] |
王驹, 苏锐, 陈亮, 等. 论中国高放废物地质处置地下实验室发展战略[C]//第七届废物地下处置学术研讨会暨国际放射性废物处置研讨会, 北京, 2018: 10-17.
WANG Ju, SU Rui, CHEN Liang, et al. The development strategy of the underground research laboratory for geological disposal of high level radioactive waste in China[C]//7th Symposium on Underground Waste Disposal. Beijing, 2018: 10-17. (In Chinese)
|
[2] |
IAEA. Disposal of Radioactive Waste: Specific Safety Requirements, IAEA Safety Standards Series No. SSR-5[R]. Vienna, IAEA, 2011.
|
[3] |
陈永贵, 贾灵艳, 叶为民, 等. 施工接缝对缓冲材料水-力特性影响研究进展[J]. 岩土工程学报, 2017, 39(1): 138-147. doi: 10.11779/CJGE201701012
CHEN Yonggui, JIA Lingyan, YE Weimin, et al. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 138-147. (in Chinese) doi: 10.11779/CJGE201701012
|
[4] |
SUN Z, CHEN Y G, CUI Y J, et al. Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi(GMZ) bentonite: The Beishan site case, Gansu, China[J]. Engineering Geology, 2018, 244: 66-74. doi: 10.1016/j.enggeo.2018.08.002
|
[5] |
苏薇. 考虑膜效应的GMZ膨润土及其混合物水-化屏障性能研究[D]. 上海: 同济大学, 2018.
SU Wei, Study on the Hydro-Chemical Performances of GMZ Bentonite Based Materials with Consideration of Membrane Effects[D]. Shanghai: Tongji University, 2018. (in Chinese)
|
[6] |
MOKNI N, BARNICHON J D. SEALEX in-situ experiments-performance tests of repository seals: experimental observations and modelling[C]//3rd European Conference on Unsaturated Soils, Paris, 2016: 04006.
|
[7] |
WANG Q. Hydro-Mechanical Behaviour of Bentonite-Based Materials Used for High-Level Radioactive Waste Disposal[D]. Paris: Ecole des Ponts ParisTech, 2012.
|
[8] |
VILLAR M V, IGLESIAS R J, GUTIERREZ-ALVAREZ C, et al. Hydraulic and mechanical properties of compacted bentonite after 18 years in barrier conditions[J]. Applied Clay Science, 2018, 160: 49-57. doi: 10.1016/j.clay.2017.12.045
|
[9] |
ENRESA. FEBEX Full-Scale Engineered Barriers Experiment in: Updated Final Report 1994-2004[R]. Madrid: Publicación Técnica ENRESA, 2006.
|
[10] |
KIM M, LEE S, CHEON E, et al. Thermochemical changes on swelling pressure of compacted bentonite[J]. Annals of Nuclear Energy, 2021, 151: 107882. doi: 10.1016/j.anucene.2020.107882
|
[11] |
KIM S S, BAIK M H, KANG K C. Solubility of neptunium oxide in the KURT (KAERI Underground Research Tunnel) groundwater[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 280(3): 577-583. doi: 10.1007/s10967-009-7481-y
|
[12] |
KOMINE H, YASUHARA K, MURAKAMI S. Swelling characteristics of bentonites in artificial seawater[J]. Canadian Geotechnical Journal, 2009, 46(2): 177-189. doi: 10.1139/T08-120
|
[13] |
LIU Y M, CAO S F. THM evolution of bentonite in China-Mock-Up test for high-level radioactive waste disposal in China[C]//2nd Pan-American Conference on Unsaturated Soils, Dallas, 2018: 403-412.
|
[14] |
LLORET A, VILLAR M V, SÁNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27-40. doi: 10.1680/geot.2003.53.1.27
|
[15] |
SCHANZ T, AL-BADRAN Y. Swelling pressure characteristics of compacted Chinese Gaomiaozi bentonite GMZ01[J]. Soils and Foundations, 2014, 54(4): 748-759. doi: 10.1016/j.sandf.2014.06.026
|
[16] |
KOMINE H, OGATA N. Experimental study on swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal, 1994, 31(4): 478-490. doi: 10.1139/t94-057
|
[17] |
VILLAR M V, GÓMEZ-ESPINA R, LLORET A. Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 71-78.
|
[18] |
叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. doi: 10.11779/CJGE202001003
YE Weimin, LIU Zhangrong, CUI Yujun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. (in Chinese) doi: 10.11779/CJGE202001003
|
[19] |
CHEN Y G, DONG X X, ZHANG X D, et al. Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite[J]. Applied Clay Science, 2018, 166: 318-326. doi: 10.1016/j.clay.2018.10.001
|
[20] |
SUN D A, ZHANG L, LI J, et al. Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution[J]. Applied Clay Science, 2015, 105: 207-216.
|
[21] |
KARNLAND O, OLSSON S, NIELSSON U. Mineralogy and Sealing Properties of Various Bentonites and Smectite-Rich Clay Materials[R]. Stockholm: SKB, 2006.
|
[22] |
LEE J O, LIM J G, KANG I M, et al. Swelling pressures of compacted Ca-bentonite[J]. Engineering Geology, 2012, 129: 20-26.
|
[23] |
JADDA K, BAG R. Variation of swelling pressure, consolidation characteristics and hydraulic conductivity of two Indian bentonites due to electrolyte concentration[J]. Engineering Geology, 2020, 272: 105637. doi: 10.1016/j.enggeo.2020.105637
|
[24] |
LI Z, SU G, ZHENG Q, et al. A dual-porosity model for the study of chemical effects on the swelling behaviour of MX-80 bentonite[J]. Acta Geotechnica, 2020, 15(3): 635-653. doi: 10.1007/s11440-019-00762-5
|
[25] |
ZHU C M, YE W M, CHEN Y G, et al. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Engineering Geology, 2013, 166: 74-80. doi: 10.1016/j.enggeo.2013.09.001
|
[26] |
LANG L Z, TRIPATHY S, BAILLE W, et al. Linkage between swelling pressure, total suction of saturated bentonites and suction of saturating aqueous solutions[J]. Applied Clay Science, 2019, 171: 82-91. doi: 10.1016/j.clay.2019.02.007
|
[27] |
JENNI A, MäDER U. Coupling of chemical and hydromechanical properties in bentonite[J]. Applied Geochemistry, 2018, 97: 147-156. doi: 10.1016/j.apgeochem.2018.08.013
|
[28] |
CHEN Y G, DONG X X, ZHANG X D, et al. Cyclic thermal and saline effects on the swelling pressure of densely compacted Gaomiaozi bentonite[J]. Engineering Geology, 2019, 255: 37-47. doi: 10.1016/j.enggeo.2019.04.016
|
[29] |
GUIMARAES L D, GENS A, SANCHEZ M, et al. A chemo-mechanical constitutive model accounting for cation exchange in expansive clays[J]. Geótechnique, 2013, 63(3): 221-234. doi: 10.1680/geot.SIP13.P.012
|
[30] |
MATA C. Hydraulic Behaviour of Bentonite Based Mixtures in Engineered Barriers: the Backfill and Plug Test at the Ӓspö HRL (Sweden)[D]. Barcelona: Technical University of Catalonia, 2003.
|
[31] |
HE Y, YE W M, CHEN Y G, et al. Effects of K+ solutions on swelling behavior of compacted GMZ bentonite[J]. Engineering Geology, 2019, 249: 241-248. doi: 10.1016/j.enggeo.2018.12.020
|
[32] |
SHEHATA A, FALL M, DETELLIER C, et al. Effect of groundwater chemistry and temperature on swelling and microstructural properties of sand-bentonite for barriers of radioactive waste repositories[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1857-1873. doi: 10.1007/s10064-020-02020-5
|
[33] |
XIANG G, YE W, XU Y, et al. Swelling deformation of Na-bentonite in solutions containing different cations[J]. Engineering Geology, 2020, 277: 105757. doi: 10.1016/j.enggeo.2020.105757
|
[34] |
PUSCH R, YONG R N. Microstructure of smectite clays and engineering performance[M]. London: Taylor & Francis, 2006.
|
[35] |
MELKIOR T, GAUCHER E C, BROUARD C, et al. Na+ and HTO diffusion in compacted bentonite: effect of surface chemistry and related texture[J]. Journal of Hydrology, 2009, 370(1/2/3/4): 9-20.
|
[36] |
HOLMBOE M, WOLD S, JONSSON M. Porosity investigation of compacted bentonite using XRD profile modeling[J]. Journal of Contaminant Hydrology, 2012, 128(1/2/3/4): 19-32.
|
[37] |
SHEN X Y, BOURG I C. Molecular dynamics simulations of the colloidal interaction between smectite clay nanoparticles in liquid water[J]. Journal of Colloid and Interface Science, 2021, 584: 610-621. doi: 10.1016/j.jcis.2020.10.029
|
[38] |
FERRAGE E. Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives[J]. Clays and Clay Minerals, 2016, 64(4): 348-373. doi: 10.1346/CCMN.2016.0640401
|
[39] |
RAO S M, THYAGARAJ T, RAO P R. Crystalline and osmotic swelling of an expansive clay inundated with sodium chloride solutions[J]. Geotechnical and Geological Engineering, 2013, 31(4): 1399-1404. doi: 10.1007/s10706-013-9629-3
|
[40] |
ZHANG T, DENG Y, CUI Y, et al. Porewater salinity effect on flocculation and desiccation cracking behaviour of kaolin and bentonite considering working condition[J]. Engineering Geology, 2019, 251: 11-23. doi: 10.1016/j.enggeo.2019.02.007
|
[41] |
LAIRD D A. Influence of layer charge on swelling of smectites[J]. Applied Clay Science, 2006, 34(1/2/3/4): 74-87.
|
[42] |
DOR M, LEVI-KALISMAN Y, DAY-STIRRAT R J, et al. Assembly of clay mineral platelets, tactoids, and aggregates: effect of mineral structure and solution salinity[J]. Journal of Colloid and Interface Science, 2020, 566: 163-170. doi: 10.1016/j.jcis.2020.01.084
|
[43] |
SUN L L, LING C Y, LAVIKAINEN L P, et al. Influence of layer charge and charge location on the swelling pressure of dioctahedral smectites[J]. Chemical Physics, 2016, 473: 40-45. doi: 10.1016/j.chemphys.2016.05.002
|
[44] |
TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Canadian Geotechnical Journal, 2004, 41(3): 437-450. doi: 10.1139/t03-096
|
[45] |
KOMINE H, OGATA N. New equations for swelling characteristics of bentonite-based buffer materials[J]. Canadian Geotechnical Journal, 2003, 40(2): 460-475. doi: 10.1139/t02-115
|
[46] |
LAIRD D A. Model for crystalline swelling of 2: 1 phyllosilicates[J]. Clays & Clay Minerals, 1996, 44(4): 553-559.
|
[47] |
LIU L C. Prediction of swelling pressures of different types of bentonite in dilute solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434: 303-318.
|
[48] |
蔡叶青, 陈永贵, 叶为民, 等. 处置库近场膨润土胶体产生及稳定性研究进展[J]. 岩土工程学报, 2020, 42(11): 1996-2005. doi: 10.11779/CJGE202011004
CAI Yeqing, CHEN Yonggui, YE Weimin, et al. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. (in Chinese) doi: 10.11779/CJGE202011004
|
[49] |
DELLA VECCHIA G, MUSSO G. Some remarks on single- and double-porosity modeling of coupled chemo-hydro-mechanical processes in clays[J]. Soils and Foundations, 2016, 56(5): 779-789.
|
[50] |
IDIART A, LAVINA M, COCHEPIN B, et al. Hydro-chemo-mechanical modelling of long-term evolution of bentonite swelling[J]. Applied Clay Science, 2020, 195: 105717.
|
[51] |
NAVARRO V, ASENSIO L, GHARBIEH H, et al. A triple porosity hydro-mechanical model for MX-80 bentonite pellet mixtures[J]. Engineering Geology, 2020, 265: 105311.
|