• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FANG Yong, WANG Kai, TAO Li-ming, LIU Peng-cheng, DENG Ru-yong. Experimental study on clogging of cutterhead for panel earth-pressure-balance shield tunneling in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1651-1658. DOI: 10.11779/CJGE202009009
Citation: FANG Yong, WANG Kai, TAO Li-ming, LIU Peng-cheng, DENG Ru-yong. Experimental study on clogging of cutterhead for panel earth-pressure-balance shield tunneling in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1651-1658. DOI: 10.11779/CJGE202009009

Experimental study on clogging of cutterhead for panel earth-pressure-balance shield tunneling in cohesive strata

More Information
  • Received Date: December 29, 2019
  • Available Online: December 07, 2022
  • The panel EPB shield machine is prone to mud cake problems when excavating in clay ground. The cutters will be gradually covered by the mud cake, and the opening of the cutterhead will be clogged. The tunneling efficiency will be reduced and even the shield machine will completely lose its tunneling capacity. Thus, the mud cake poses great influences to shield tunnel construction. The adhesion mechanism between the cutterhead and the soil particles is introduced. The indoor tests are conducted by using the self-made panel cutterhead excavating simulation devices. Changes of cutterhead-driving speed and torque are studied, and the relationship between these parameters and the clogging of cutterhead is revealed. The research results demonstrate that the cutterhead clogging is a gradual process. The soil particles adhere to the cutters first and then gradually expand to form mud cake. The mud cake will cover the cutters and reduce the penetration and block the opening, reducing the efficiency of discharging. The influences of mud cake is mainly reflected in the increase of cutter head torque, the slower tunneling speed and the lowering of the smoothness of discharging. When the mud cake begins to form, the increase of cutter torque accords with the cubic polynomial function, and the tunneling speed is exponentially reduced. The water content of soil has a significant effect on the formation of mud cake and clogging of the cutter head. If the water content approaches the plastic limit, the mud cake will form easily, the shield tunneling efficiency will be minimized, and the risk of clogging is the highest. The research results are of great significance in assessing the risks of mud cake and clogging of cutterhead of panel EPB shield tunneling in clay ground.
  • [1]
    竺维彬, 鞠世健, 张弥, 等. 广州地铁二号线旧盾构穿越珠江的工程难题及对策[J]. 土木工程学报, 2004(1): 56-60 https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200401009.htm

    ZHU Wei-bin, JU Shi-jian, ZHANG Mi, et al. On the engineering poser and countermeasure of driving and crossing the Pearl River with two used TBMs in Guangzhou metro line of No. 2[J]. China Civil Engineering Journal, 2004(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200401009.htm
    [2]
    李志军, 翟志国, 赵康林. 泥水盾构刀盘结泥饼形成原因及防治技术[J]. 地下空间与工程学报, 2014, 10(增刊2): 1866-1871. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2014S2022.htm

    LI Zhi-jun, ZHAI Zhi-guo, ZHAO Kang-lin. Causes of mud cake formation on cutter head of slurry shield and its control technology[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(S2): 1866-1871. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2014S2022.htm
    [3]
    郭彩霞, 孔恒, 王梦恕. 无水大粒径漂卵砾石地层土压平衡盾构施工渣土改良分析[J]. 土木工程学报, 2015, 48(增刊1): 201-205. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1033.htm

    GUO Cai-xia, KONG Heng, WANG Meng-shu. Study on muck improvement of EPB shield tunneling in waterless sandy-cobble-boulder stratum[J]. China Civil Engineering Journal, 2015, 48(S1): 201-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1033.htm
    [4]
    严辉. 盾构隧道施工中刀盘泥饼的形成机理和防治措施[J]. 现代隧道技术, 2007, 44(4): 24-27, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200704007.htm

    YAN Hui. Mechanism of the formation and the prevention of clay cake in shield tunneling[J]. Modern Tunnelling Technology, 2007, 44(4): 24-27, 35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200704007.htm
    [5]
    董祥宽. 重庆复合式TBM刀盘防结泥饼技术[J]. 隧道建设, 2012(增刊2): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2012S2020.htm

    DONG Xiang-kuan. Research on the key elements of the combined TBM in the Chongqing metro[J]. Tunnel Construction, 2012(S2): 101-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2012S2020.htm
    [6]
    杨金钟, 魏斌效, 田利锋. 辐条式刀盘在砂卵石地层的泥饼成因及处理措施[C]//2011中国盾构技术学术研讨会论文集, 2011, 北京.

    YANG Jin-zhong, WEI Bin-xiao, TIAN Li-feng. Causes and treatment measures of mud cake of spoke cutter in sandy pebble formation[C]//Proceedings of 2011 China Symposium on Shield Machine Technology, 2011, Beijing. (in Chinese)
    [7]
    康洪信. 硬塑黏土层盾构干碴出土施工技术研究[J]. 铁道建筑技术, 2016(增刊1): 248-251.

    KANG Hong-xin. Shield machine dry soil excavating technologies in hard plastic clay layer[J]. Railway Construction Technology, 2016(S1): 248-251. (in Chinese)
    [8]
    侯凯文, 王崇, 江杰, 等. 南宁地铁2号线盾构选型设计与适应性分析[J]. 隧道建设, 2017(8): 1037-1045.

    HOU Kai-wen, WANG Chong, JIANG Jie, et al. Type selection design and adaptability analysis of shield used in line No. 2 of Nanning metro[J]. Tunnel Construction, 2017(8): 1037-1045. (in Chinese)
    [9]
    邓彬, 顾小芳. 上软下硬地层盾构施工技术研究[J]. 现代隧道技术, 2012, 49(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201202013.htm

    DENG Bin, GU Xiao-fang. Study of shield construction technology in soft upper stratum and hard under stratum[J]. Modern Tunnelling Technology, 2012, 49(2): 59-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201202013.htm
    [10]
    翟圣智, 胡蒙达, 叶明勇, 等. 南昌上软下硬地层土压平衡盾构渣土改良技术研究[J]. 铁道建筑, 2014(8): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201408009.htm

    ZHAI Sheng-zhi, HU Meng-da, YE Ming-yong, et al. Ground conditioning technology for EPB shield tunneling in composite strata in Nanchang[J]. Railway Engineering, 2014(8): 27-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201408009.htm
    [11]
    陈馈, 冯欢欢. 深圳地铁11号线大直径盾构适应性设计[J]. 现代隧道技术, 2015, 52(2): 166-173. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201502026.htm

    CHEN Kui, FENG Huan-huan. Adaptability design for a large-diameter shield used in Shenzhen metro line 11[J]. Modern Tunnelling Technology, 2015, 52(2): 166-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201502026.htm
    [12]
    刘卫. 南昌复合地层盾构渣土改良技术[J]. 隧道建设, 2015, 35(5): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201505020.htm

    LIU Wei. Ground conditioning technology for shield tunneling in composite strata in Nanchang[J]. Tunnel Construction, 2015, 35(5): 455-462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201505020.htm
    [13]
    SPA G. Review of alternative construction methods and feasibility of proposed methods for constructing Attiko Metro Extension of Line 3 to EgaleoAttiko Metro SA[Z]. Greece, 1995.
    [14]
    THEWES M, BURGER W. Clogging of TBM drives in clay–identification and mitigation of risks[J]. Erdem and Solak (eds) Underground Space Use, 2005: 737-742.
    [15]
    THEWES M, HOLLMANN F. Assessment of clay soils and clay-rich rock for clogging of TBMs[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2016, 57: 122-128.
    [16]
    FEINENDEGEN M, ZIEGLER M, SPAGNOLI G, et al. A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with epb-shields[C]//ISRM International Symposium-eurock, 2010, London.
    [17]
    HOLLMANN F S, THEWES M. Assessment method for clay clogging and disintegration of fines in mechanized tunnelling[J]. Tunnelling & Underground Space Technology, 2013, 37(13): 96-106.
    [18]
    FEINENDEGEN M, ZIEGLER M, SPAGNOLI G, et al. Evaluation of the clogging potential in mechanical tunnel driving with EPB-shields[C]//Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, 2011, Athens: 1633-1638.
    [19]
    THEWES M, BUDACH C. Soil conditioning with foam during EPB tunneling[J]. Geomechanics and Tunnelling, 2010, 3(3): 256-267.
    [20]
    THEWES M, BUDACH C, BEZUIJEN A. Foam conditioning in EPB tunnelling[M]//Geotechnical Aspects of Underground Construction in Soft Ground, 2011, Rome.
    [21]
    ZUMSTEG R, PLÖTZE M, PUZRIN A M. Effect of soil conditioners on the pressure and rate-dependent shear strength of different clays[J]. Journal of Geotechnical &Geoenvironmental Engineering, 2012, 138(9): 1138-1146.
    [22]
    ZUMSTEG R, PLÖTZE M, PUZRIN A. Reduction of the clogging potential of clays: new chemical applications and novel quantification approaches[J]. Géotechnique, 2013, 63(4): 276-286.
    [23]
    Burbaum U, Sass I, Breuer B. Adhesive properties of variable solid clay stones based on the example of the Stuttgart Lias Alpha[J]. Geotechnology, 2010, 33(2): S.175-178. (in German)
    [24]
    HEUSER M, SPAGNOLI G, LEROY P, et al. Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving[J]. Bulletin of Engineering Geology & the Environment, 2012, 71(4): 721-733.
    [25]
    朱伟. 隧道标准规范(盾构篇)及解说[M]. 北京: 中国建筑工业出版社, 2001.

    ZHU Wei. Japanese Standards for the Shield Tunnel[M]. Beijing: China Architecture & Building Press, 2001. (in Chinese)
    [26]
    蔡兵华, 李忠超, 余守龙, 等. 土压平衡盾构施工中红黏土土体改良试验研究[J]. 现代隧道技术, 2019, 56(5): 218-227. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201905031.htm

    CAI Bin-hua, LI Zhong-chao, YU Shou-long, et al. Experimental study on red clay conditioning for EPB shield tunnelling[J]. Modern Tunnelling Technology, 2019, 56(5): 218-227. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201905031.htm
    [27]
    万伦来, 王立平. 统计学原理与应用[M]. 北京: 清华大学出版社, 2013.

    WANG Lun-lai, WANG Li-ping. Principles and Applications of Statistics[M]. Beijing: Tsinghua University Press, 2013. (in Chinese)
  • Cited by

    Periodical cited type(28)

    1. 谢志恒,宋向荣,宋相帅,何熊. 新型盾构分散剂评价装置及泥饼分解特性研究. 施工技术(中英文). 2025(02): 148-153 .
    2. 贾思桢. 基于剪切试验的全风化花岗岩地层泡沫渣土改良研究. 四川建筑. 2024(01): 160-165 .
    3. 丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 .
    4. 周志伟,郑文杰,白雪冬,武斌. 黄土黏附特性评价-室内试验和微观响应机制研究. 土木工程学报. 2024(06): 209-220 .
    5. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
    6. 万泽恩,尹威方,李树忱,景少森,王海波,许钦明. 电渗透法降低黏土-金属界面黏附力的机理与试验研究. 岩土工程学报. 2024(08): 1732-1741 . 本站查看
    7. 赵兴,许佳磊,张志强. 上软下硬复合地层盾构渣土改良试验研究. 铁道标准设计. 2024(10): 150-158 .
    8. 孟善宝. 黄土地层土压平衡盾构刀盘堵塞风险研究. 铁道建筑技术. 2024(10): 63-66+89 .
    9. 杨国华. 软弱地层盾构渣土制备同步注浆浆液及工程应用. 岩土工程技术. 2024(06): 718-724 .
    10. QIN ChengJin,WU RuiHong,HUANG GuoQiang,TAO JianFeng,LIU ChengLiang. A novel LSTM-autoencoder and enhanced transformer-based detection method for shield machine cutterhead clogging. Science China(Technological Sciences). 2023(02): 512-527 .
    11. 占永杰,王树英,杨秀竹,王海波. 考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型. 岩土工程学报. 2023(08): 1644-1652 . 本站查看
    12. 方勇,王宇博,王凯,钱聚强,陈中天,卓彬. 基于界面黏附力盾构堵塞风险评判方法研究. 岩土工程学报. 2023(09): 1813-1821 . 本站查看
    13. 孙恒,杨擎,黄新淼,李杰华,张赟. 土压平衡盾构出渣温度实时监测系统设计与应用. 隧道建设(中英文). 2023(08): 1396-1403 .
    14. 王延辉,周天顺,胡俊山,陈海勇,施成华,彭宇,王祖贤. 高黏性黏土地层大直径泥水盾构掘进姿态失稳及其处理措施. 现代隧道技术. 2023(05): 213-223 .
    15. 周双禧. 基于量纲理论的盾构掘进扭矩计算模型. 工业建筑. 2023(S2): 500-502 .
    16. 常勇,任国平,髙始军,张箭,梁禹. 高黏性地层大直径泥水盾构刀盘结泥饼问题的处置. 工业建筑. 2023(S2): 596-601+595 .
    17. 孙云博,刘磊,李矿矿,崔超. 土压平衡盾构刀盘扭矩影响因素试验研究. 工业建筑. 2023(S2): 889-892 .
    18. 季昌,周顺华,姚琦钰,金钰寅,欧阳皖霖. 土压平衡盾构土仓内黏性渣土堵塞的模拟判别与分析. 同济大学学报(自然科学版). 2022(01): 60-69 .
    19. 周凯歌,方勇,廖杭,王凯,宋天田. 强风化混合花岗岩地层中盾构泥饼堵塞情况下渣土改良剂效果分析. 隧道建设(中英文). 2022(02): 283-290 .
    20. 魏力峰,叶来宾,黄际政,刘鹏程,方勇. 黏性地层盾构刀盘泥饼崩解特性试验研究. 隧道建设(中英文). 2022(02): 275-282 .
    21. 杨益,谭超,李兴高. 考虑温度效应的盾构法黏土-金属界面黏附力试验. 土木工程与管理学报. 2022(02): 120-125 .
    22. 杨柏超,张超. 某水利工程引水隧洞EPB盾构施工注浆压力与地表沉降关系研究. 黑龙江水利科技. 2022(04): 34-36 .
    23. 王文,潘雪瑛,赵延平,颜梦秋,陆地,陈孔磊. 土压平衡盾构刀盘泥饼堵塞改善研究. 土工基础. 2022(03): 304-307 .
    24. 朱连臣. 盾构隧道穿越泉域强富水灰岩地质掘进控制技术. 城市轨道交通研究. 2022(09): 160-165 .
    25. 马全武,赵凤凯,杨绍玉,杨星,江玉生,刘成龙. 土压平衡盾构黏土改良及其对滚刀影响的试验研究. 市政技术. 2022(11): 18-23+51 .
    26. 常嘉,胡耀越,马昊,白学涛,李宗亮. 特殊地质环境下地铁盾构造价异动测算分析. 工程经济. 2021(02): 13-18 .
    27. 张伟,赵东平,王卢伟,李栋,王德勇. 砂卵石地层大直径土压平衡盾构选型研究. 现代隧道技术. 2021(S1): 441-450 .
    28. 杨武林. 土压平衡盾构施工场地布置方法. 智能城市. 2020(24): 115-116 .

    Other cited types(11)

Catalog

    Article views (369) PDF downloads (140) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return