• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WAN Ze'en, YIN Weifang, LI Shuchen, JING Shaosen, WNAG Haibo, XU Qinming. Mechanism and experimental tests on reducing adhesive force of clay-metal interface by using electro-osmosis method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1732-1741. DOI: 10.11779/CJGE20231152
Citation: WAN Ze'en, YIN Weifang, LI Shuchen, JING Shaosen, WNAG Haibo, XU Qinming. Mechanism and experimental tests on reducing adhesive force of clay-metal interface by using electro-osmosis method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1732-1741. DOI: 10.11779/CJGE20231152

Mechanism and experimental tests on reducing adhesive force of clay-metal interface by using electro-osmosis method

More Information
  • Received Date: November 26, 2023
  • Available Online: March 24, 2024
  • The mechanical construction is widely used in geotechnical engineering, but clay clogging is the major problem that hinders construction. Shield, drilling pile machine and other equipments are prone to mud cake, clogging, poor soil discharge and other phenomena during the construction in clay stratum, which leads to the increased torque of the apparatus, intensified tool wear and reduced construction efficiency. The clay clogging generally occurs at the interface between clay and metal surfaces, and reducing the adhesion force of the clay to the metal surfaces is the key to solving the above issues. A method of using the electro-osmosis technology is introduced to form a water film between the clay and the metal interfaces to reduce the clay adhesion. The tilted-plate tests and electro-osmosis tests are conducted on four types of clay under different voltages and water contents. The experimental results show that the electrodynamic behavior of the clay is influenced by the water content and clay minerals, and needs to meet a certain voltage threshold. The critical sliding voltage threshold of the four clay samples in the experiment is concentrated at 4 V, with slight differences influenced by the water content. After the voltage exceeds the threshold, the detachment time of the soil samples decreases sharply. Increasing the voltage from 9 V to 11 V does not show a significant difference in the detachment time. After the voltage exceeds 7 V, increasing the voltage has few effects on reducing the stickiness of the soil samples, but the energy consumption during the electro-osmosis process increases significantly. When applying the electro-osmosis method in practical engineering, the factors such as energy consumption and formation conditions should be considered comprehensively so as to select the optimal voltage-based electro-osmosis viscosity reduction program and improve the construction efficiency.
  • [1]
    周文波, 吴惠明, 赵峻. 泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019, 56(4): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904002.htm

    ZHOU Wenbo, WU Huiming, ZHAO Jun. On driving strategy of the shield machine with atmospheric cutterhead in mudstone strata[J]. Modern Tunnelling Technology, 2019, 56(4): 8-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904002.htm
    [2]
    WAN Z, LI S, YUAN C, et al. Soil conditioning for EPB shield tunneling in silty clay and weathered mudstone[J]. International Journal of Geomechanics, 21(9): 06021020. doi: 10.1061/(ASCE)GM.1943-5622.0002119
    [3]
    方勇, 王凯, 陶力铭, 等. 黏性地层面板式土压平衡盾构刀盘泥饼堵塞试验研究[J]. 岩土工程学报, 2020, 42(9): 1651-1658. doi: 10.11779/CJGE202009009

    FANG Yong, WANG Kai, TAO Liming, et al. Experimental study on clogging of cutterhead for panel earth-pressure-balance shield tunneling in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1651-1658. (in Chinese) doi: 10.11779/CJGE202009009
    [4]
    REUSS F. Sur un nouvel effet de l'électricité galvanique[J]. Mem Soc Imp Natur Moscou, 1809(2): 327-337. (REUSS F. On a new effect of galvanic electricity[J]. Memoirs of the Imperial Society of Naturalists Moscow, 1809(2): 327-337. (in French))
    [5]
    CASAGRANDE I L. Electro-osmosis in soils[J]. Géotechnique, 1949, 1(1): 159-177.
    [6]
    王柳江, 陈强强, 刘斯宏, 等. 水平排水板真空预压联合电渗处理软黏土模型试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3516-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2030.htm

    WANG Liujiang, CHEN Qiangqiang, LIU Sihong, et al. Model test on treatment of soft clay under combined vacuum preloading with electro-osmosis using prefabricated horizontal drain[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3516-3525. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2030.htm
    [7]
    刘飞禹, 宓炜, 王军, 等. 逐级加载电压对电渗加固吹填土的影响[J]. 岩石力学与工程学报, 2014, 33(12): 2582-2591. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412026.htm

    LIU Feiyu, MI Wei, WANG Jun, et al. Influence of applying stepped voltage in electroosmotic reinforcement of dredger fill[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2582-2591. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412026.htm
    [8]
    崔允亮, 项鹏飞, 王新泉. 含水率与含砂率对软黏土电阻率影响的试验研究[J]. 科学技术与工程, 2018, 18(3): 335-338. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201803055.htm

    CUI Yunliang, XIANG Pengfei, WANG Xinquan. Experimental study on influence of water content and sand content on resistivity of soft clay[J]. Science Technology and Engineering, 2018, 18(3): 335-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201803055.htm
    [9]
    项鹏飞, 崔允亮, 王新泉. 含水率与含砂率对软黏土电渗透系数的影响试验研究[J]. 铁道建筑, 2017, 57(12): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201712020.htm

    XIANG Pengfei, CUI Yunliang, WANG Xinquan. Experimental study on influence of water content and sand content on electroosmosis coefficient of soft clay[J]. Railway Engineering, 2017, 57(12): 75-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201712020.htm
    [10]
    李瑛, 龚晓南. 含盐量对软黏土电渗排水影响的试验研究[J]. 岩土工程学报, 2011, 33(8): 1254-1259. http://cge.nhri.cn/cn/article/id/14160

    LI Ying, GONG Xiaonan. Experimental study on effect of soil salinity on electro-osmotic dewatering in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1254-1259. (in Chinese) http://cge.nhri.cn/cn/article/id/14160
    [11]
    李瑛, 龚晓南. 软黏土地基电渗加固的设计方法研究[J]. 岩土工程学报, 2011, 33(6): 955-959. http://cge.nhri.cn/cn/article/id/14037

    LI Ying, GONG Xiaonan. Design method of electro-osmosis reinforcement for soft clay foundations[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 955-959. (in Chinese) http://cge.nhri.cn/cn/article/id/14037
    [12]
    李瑛, 龚晓南, 郭彪, 等. 电渗软黏土电导率特性及其导电机制研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 4027-4032. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2081.htm

    LI Ying, GONG Xiaonan, GUO Biao, et al. Research on conductivity characteristics of soft clay during electro-osmosis and its conductive mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4027-4032. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2081.htm
    [13]
    龚晓南, 焦丹. 间歇通电下软黏土电渗固结性状试验分析[J]. 中南大学学报(自然科学版), 2011, 42(6): 1725-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201106037.htm

    GONG Xiaonan, JIAO Dan. Experimental study on electro-osmotic consolidation of soft clay under intermittent current condition[J]. Journal of Central South University (Science and Technology), 2011, 42(6): 1725-1730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201106037.htm
    [14]
    王柳江, 刘斯宏, 樊科伟, 等. 真空电渗联合振动碾压加固超软黏土试验研究[J]. 水运工程, 2017(5): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201705027.htm

    WANG Liujiang, LIU Sihong, FAN Kewei, et al. Experimental study of combined application of vacuum electroosmotic drainage and vibration rolling in ultra-soft clay improvement[J]. Port and Waterway Engineering, 2017(5): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201705027.htm
    [15]
    周亚东, 付继宇, 邓安, 等. 真空预压–电渗联合作用下软黏土非线性大变形固结模型[J]. 岩石力学与工程学报, 2019, 38(8): 1677-1685. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908017.htm

    ZHOU Yadong, FU Jiyu, DANG An, et al. A nonlinear consolidation model of soft clay under the combination of electroomosis and vacuum preloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1677-1685. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908017.htm
    [16]
    刘飞禹, 张乐, 王军, 等. 外荷载变电压作用下软黏土电渗固结试验研究[J]. 上海大学学报(自然科学版), 2014, 20(2): 228-238. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201402012.htm

    LIU Feiyu, ZHANG Le, WANG Jun, et al. Experimental study on electro-osmosic consolidation of soft clay under preloading and variable voltage[J]. Journal of Shanghai University (Natural Science Edation), 2014, 20(2): 228-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201402012.htm
    [17]
    AZZAM R, OEY W. The utilization of electrokinetics in geotechnical and environmental engineering[J]. Transport in Porous Media, 2001, 42: 293-314.
    [18]
    LAMBE T W. Foundation Engineering[M]. New York: McGraw-Hill Education, 1962.
    [19]
    MICIC S, SHANG J Q, LO K Y. Electrokinetic strengthening of marine clay adjacent to offshore foundations[J]. International Journal of Offshore and Polar Engineering, 2002, 12(1): 64-73.
    [20]
    MOHAMEDELHASSAN E, SHANG J Q. Feasibility assessment of electro-osmotic consolidation on marine sediment[J]. Ground Improvement, 2002, 6(4): 145-152.
    [21]
    VAN BAALEN L R. Reduction of Clay Adherence by Electro-osmosis[D]. Amsterdam: Centre of Engineering Geology in the Netherlands, 1999.
    [22]
    VAN BAALEN L R, ZIMNIK A. VERHOEF P, et al. Applicability of electro-osmosis to reduce clay adherence in a TBM[C]// Proceedings of the International Conference on Geotechnical Geological Engineering. Beijing, 2001.
    [23]
    SPAGNOLI G. Electro-chemo-mechanical Manipulations of Clays Regarding the Clogging During EPB-tunnel Driving[D]. Aachen: RWTH Aachen University, 2011.
    [24]
    HEUSER M, SPAGNOLI G, LEROY P, et al. Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving[J]. Bulletin of Engineering Geology and the Environment, 2012, 71: 721-733.
    [25]
    FOUNTAINE E R. Investigations into the mechanism of soil adhesion[J]. Journal of Soil Science, 1954, 5(2): 251-263.
    [26]
    贾贤, 任露泉, 陈秉聪. 土壤对固体材料黏附力的理论分析[J]. 农业工程学报, 1995(4): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU199504001.htm

    JIA Xian, REN Luquan, CHEN Bingcong. Theoretical analysis of adhesion force of soil to solid materials[J]. Transactions of the Chinese Society of Agricultural Engineering, 1995(4): 5-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU199504001.htm
    [27]
    方勇, 王宇博, 王凯, 等. 基于界面黏附力盾构堵塞风险评判方法研究[J]. 岩土工程学报, 2023, 45(9): 1813-1821. doi: 10.11779/CJGE20220634

    FANG Yong, WANG Yubo, WANG Kai, et al. Risk evaluation method for shield clogging based on interface adhesion force[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1813-1821. (in Chinese) doi: 10.11779/CJGE20220634
    [28]
    陶力铭. 盾构刀盘-土壤界面黏附机理试验研究[D]. 成都: 西南交通大学, 2020.

    TAO Liming. Experimental Study on the Adhesion Mechanism of Shield Cutterhead-Soil Interface[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [29]
    JIA X. Theoretical analysis of the adhesion force of soil to solid materials[J]. Biosystems Engineering, 2004, 87(4): 489-493.
    [30]
    LEROY P, REVIL A. A triple-layer model of the surface electrochemical properties of clay minerals[J]. Journal of Colloid and interface Science, 2004, 270(2): 371-380.
    [31]
    TIKHOMOLOVA K P. Electro-osmosis[D]. Ellis Horwood: University of St Petersburg, 1993.
    [32]
    SPAGNOLI G, KLITZSCH N, FERNANDEZ-STEEGER T, et al. Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving[J]. Environmental & Engineering Geoscience, 2011, 17(4): 417-426.
    [33]
    HOLLMANN F S, THEWES M. Assessment method for clay clogging and disintegration of fines in mechanised tunnelling[J]. Tunnelling and Underground Space Technology, 2013, 37: 96-106.
    [34]
    MOHAMEDELHASSAN E, SHANG J Q. Effects of electrode materials and current intermittence in electro-osmosis[J]. Proceedings of the ICE Ground Improvement, 2001, 5(1): 3-11.
    [35]
    MITCHELL JK, SOGA K. Fundamentals of Soil Behavior[M]. 3rd ed. Hoboken NJ: Wiley, 2005.
  • Related Articles

    [1]LIU Weizheng, HUANG Xuanjia, XU Yang, LI Huili, WAN Jiale. Accumulative deformation law and control of compacted lateritic soil under coupled action of wetting and dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 535-547. DOI: 10.11779/CJGE20231281
    [2]ZHANG Xinrui, KONG Gangqiang, YANG Qing. Influences of temperature stress path on strength characteristics of undisturbed marine sediments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 357-365. DOI: 10.11779/CJGE20221308
    [3]Mechanical behavior and constitutive modelling of expansive soil under conditions of wetting and low confining stress[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240079
    [4]ZHANG Zhen-hua, WANG Ye. Degradation mechanism of shear strength and compressive strength of red sandstone in drawdown areas during reservoir operation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1217-1226. DOI: 10.11779/CJGE201907005
    [5]ZHU Jun-gao, Mohamed A. ALsakran, GONG Xuan, XUANG Xiang-yang, JI En-yue. Triaxial tests on wetting deformation behavior of a slate rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 170-174.
    [6]SHI Weicheng, ZHU Jungao, LIU Hanlong. Influence of intermediate principal stress on deformation and strength of gravel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1449-1453.
    [7]YANG Heping, ZHANG Rui, ZHENG Jianlong. Variation of deformation and strength of expansive soil during cyclic wetting and drying under loading condition[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1936-1941.
    [8]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
    [9]Chen Zhenghan. Deformation,strength,yield and moisture change of a remolded unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 85-93.
    [10]You Mingqing, Hua Anzeng, Li Yushou. A study of triaxial strength and deformation of flawed specimen[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 97-101.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return