• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xinrui, KONG Gangqiang, YANG Qing. Influences of temperature stress path on strength characteristics of undisturbed marine sediments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 357-365. DOI: 10.11779/CJGE20221308
Citation: ZHANG Xinrui, KONG Gangqiang, YANG Qing. Influences of temperature stress path on strength characteristics of undisturbed marine sediments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 357-365. DOI: 10.11779/CJGE20221308

Influences of temperature stress path on strength characteristics of undisturbed marine sediments

More Information
  • Received Date: October 23, 2022
  • Available Online: April 05, 2023
  • The difference between the room and the in-situ temperatures leads to that of the measured physical and mechanical parameters of marine sediments. Based on the temperature-controlled triaxial apparatus, the consolidated undrained shear tests are carried out on the undisturbed marine sediments from the South China Sea. The changes of deformation, strength, pore pressure and modulus of the marine sediments are measured, and the influences of temperature, temperature cycle, confining pressure and over-consolidation ratio (OCR) on the mechanical properties of the undisturbed marine sediments are discussed. The results show that the increase of the temperature gradient increases the degree of thermal consolidation of the normally consolidated marine sediments, and the corresponding drainage volume and strength also increase. The temperature increases the drainage volume of the over-consolidated marine sediments, while the temperature decreases the strength of the marine sediments. The temperature cycle can enhance the drainage volume of the over-consolidated marine sediments, and its corresponding strength also increases. When OCR=1, the measured undrained shear strength of marine sediments at 25℃ is 8.0% higher than that at 5℃. When OCR=4, the measured undrained shear strength of marine sediments at 25℃ is 1.9% lower than that at 5℃. The shear strength after the temperature cycle of 5℃—45℃—5℃ is 11.9% higher than that at 5℃. After 4 or 10 temperature cycles, the shear strength increases by 13.8% and 17.8%, respectively.
  • [1]
    LI H, KONG G Q, WEN L, et al. Pore pressure and strength behaviors of reconstituted marine sediments involving thermal effects[J]. International Journal of Geomechanics, 2021, 21(4): 6021008. doi: 10.1061/(ASCE)GM.1943-5622.0001984
    [2]
    KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al. Temperature effects on undrained shear characteristics of clay[J]. Soils and Foundations, 1995, 35(1): 147-162. doi: 10.3208/sandf1972.35.147
    [3]
    TANAKA N, GRAHAM J, CRILLY T. Stress-strain behaviour of reconstituted illitic clay at different temperatures[J]. Engineering Geology, 1997, 47(4): 339-350. doi: 10.1016/S0013-7952(96)00113-5
    [4]
    雷华阳, 冯双喜, 郝琪, 等. 吹填土热力固结和强度特性试验研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(1): 17-26.

    LEI Huayang, FENG Shuangxi, HAO Qi, et al. Experimental study on the thermal consolidation and strength characteristics of dredger fill[J]. Journal of Tianjin University (Science and Technology), 2020, 53(1): 17-26. (in Chinese)
    [5]
    费康, 周莹, 付长郓. 温度对饱和黏性土剪切特性影响的试验研究[J]. 岩土工程学报, 2020, 42(9): 1679-1686. doi: 10.11779/CJGE202009012

    FEI Kang, ZHOU Ying, FU Changyun. Experimental study on effect of temperature on shear behavior of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1679-1686. (in Chinese) doi: 10.11779/CJGE202009012
    [6]
    HOUSTON S L, HOUSTON W N, WILLIAMS N D. Thermo-mechanical behavior of seafloor sediments[J]. Journal of Geotechnical Engineering, 1985, 111(11): 1249-1263. doi: 10.1061/(ASCE)0733-9410(1985)111:11(1249)
    [7]
    ABUEL-NAGA H M, BERGADO D T, BOUAZZA A. Thermally induced volume change and excess pore water pressure of soft Bangkok clay[J]. Engineering Geology, 2007, 89(1/2): 144-154.
    [8]
    陆嘉楠, 徐洁, 陈永辉. 温度影响粉质黏土固结和强度特性的试验研究[J]. 防灾减灾工程学报, 2017, 37(4): 598-603.

    LU Jianan, XU Jie, CHEN Yonghui. Experimental study of temperature effects on consolidation and strength properties of silty clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 598-603. (in Chinese)
    [9]
    DI DONNA A, LALOUI L. Response of soil subjected to thermal cyclic loading: experimental and constitutive study[J]. Engineering Geology, 2015, 190: 65-76. doi: 10.1016/j.enggeo.2015.03.003
    [10]
    白冰, 张鹏远, 贾丁云, 等. 不同幅值温度荷载下一种饱和红黏土的固结效应[J]. 岩土工程学报, 2013, 35(11): 1972-1978. http://www.cgejournal.com/cn/article/id/15326

    BAI Bing, ZHANG Pengyuan, JIA Dingyun, et al. Consolidation effects of a saturated red clay subjected to temperature loading with different amplitudes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1972-1978. (in Chinese) http://www.cgejournal.com/cn/article/id/15326
    [11]
    ABUEL-NAGA H M, BERGADO D T, LIM B F. Effect of temperature on shear strength and yielding behavior of soft bangkok clay[J]. Soils and Foundations, 2007, 47(3): 423-436. doi: 10.3208/sandf.47.423
    [12]
    SULTAN N, DELAGE P, CUI Y J. Temperature effects on the volume change behaviour of Boom clay[J]. Engineering Geology, 2002, 64(2/3): 135-145.
    [13]
    祁良, 郑荣跃, 陶海冰, 等. 考虑温度影响的宁波软土临界状态参数研究[J]. 水文地质工程地质, 2015, 42(5): 79-83.

    QI Liang, ZHENG Rongyue, TAO Haibing, et al. A study of the critical state parameter of the Ningbo soft clay considering the effect of temperature[J]. Hydrogeology & Engineering Geology, 2015, 42(5): 79-83. (in Chinese)
    [14]
    王宽君, 洪义, 王立忠, 等. 不排水升温条件下黏性土孔压响应[J]. 岩石力学与工程学报, 2017, 36(9): 2288-2296.

    WANG Kuanjun, HONG Yi, WANG Lizhong, et al. Effect of heating on the excess pore water pressure of clay under undrained condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2288-2296. (in Chinese)
    [15]
    YAVARI N, TANG A M, PEREIRA J M, et al. Effect of temperature on the shear strength of soils and the soil–structure interface[J]. Canadian Geotechnical Journal, 2016, 53(7): 1186-1194. doi: 10.1139/cgj-2015-0355
    [16]
    杨光华. 土力学发展的四个阶段的思考[J]. 岩土工程学报, 2022, 44(9): 1730-1732. doi: 10.11779/CJGE202209018

    YANG Guanghua. Thingking of four stages of development of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1730-1732. (in Chinese) doi: 10.11779/CJGE202209018
    [17]
    HUECKEL T, FRANÇOIS B, LALOUI L. Explaining thermal failure in saturated clays[J]. Géotechnique, 2009, 59(3): 197-212. doi: 10.1680/geot.2009.59.3.197
    [18]
    刘铨, 邓岳保, 毛伟赟, 等. 超固结比对黏土热固结特性的影响研究[J]. 防灾减灾工程学报, 2019, 39(4): 607-614.

    LIU Quan, DENG Yuebao, MAO Weiyun, et al. The influence of over consolidation ratio on thermal consolidation properties of clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 607-614. (in Chinese)
    [19]
    费康, 付长郓, 戴迪, 等. 循环温度荷载作用下饱和黏土的体积变形特性[J]. 防灾减灾工程学报, 2019, 39(4): 541-548.

    FEI Kang, FU Changyun, DAI Di, et al. Volume deformation behavior of saturated clay under thermal cycles[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 541-548. (in Chinese)

Catalog

    Article views (388) PDF downloads (104) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return