Citation: | FANG Yong, WANG Yubo, WANG Kai, QIAN Juqiang, CHEN Zhongtian, ZHUO Bin. Risk evaluation method for shield clogging based on interface adhesion force[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1813-1821. DOI: 10.11779/CJGE20220634 |
[1] |
竺维彬, 鞠世健, 张弥, 等. 广州地铁二号线旧盾构穿越珠江的工程难题及对策[J]. 土木工程学报, 2004, 37(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200401009.htm
ZHU Weibin, JU Shijian, ZHANG Mi, et al. On the engineering poser and countermeasures of driving and crossing the Pearl River with two used tbms in Guangzhou metro line of no. 2[J]. China Civil Engineering Journal, 2004, 37(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200401009.htm
|
[2] |
方勇, 王凯, 陶力铭, 等. 黏性地层面板式土压平衡盾构刀盘泥饼堵塞试验研究[J]. 岩土工程学报, 2020, 42(9): 1651-1658. doi: 10.11779/CJGE202009009
FANG Yong, WANG Kai, TAO Liming, et al. Experimental study on clogging of cutterhead for panel earth-pressure-balance shield tunneling in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1651-1658. (in Chinese) doi: 10.11779/CJGE202009009
|
[3] |
张庆建. 饱和黏土地基中黏附强度试验研究[D]. 天津: 天津大学, 2014.
ZHANG Qingjian. Research on Adhesion in Satursted Clay Soils[D]. Tianjin: Tianjin University, 2014. (in Chinese)
|
[4] |
杨益, 朱文骏, 李兴高, 等. 老黏土地层土压盾构刀盘堵塞渣土改良效果评价方法[J]. 北京交通大学学报, 2019, 43(6): 43-49, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm
YANG Yi, ZHU Wenjun, LI Xinggao, et al. Evaluation method for muck conditioning of hard clay to prevent clogging in EPB tunnelling[J]. Journal of Beijing Jiaotong University, 2019, 43(6): 43-49, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm
|
[5] |
刘成, 黄琳, 肖宇豪, 等. 土体含水率和金属波纹状表面对界面黏附力影响[J]. 林业工程学报, 2021, 6(3): 161-165. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202103026.htm
LIU Cheng, HUANG Lin, XIAO Yuhao, et al. Experimental study on the influence of soil moisture content and metal corrugated surface on the interfacial adhesion[J]. Journal of Forestry Engineering, 2021, 6(3): 161-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202103026.htm
|
[6] |
肖宇豪, 刘成, 黄琳, 等. 电渗法降低黏性土黏附力室内试验[J]. 林业工程学报, 2020, 5(4): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202004024.htm
XIAO Yuhao, LIU Cheng, HUANG Lin, et al. Laboratory tests on adhesion reduction of clay soil by electro⁃osmosis method[J]. Journal of Forestry Engineering, 2020, 5(4): 168-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF202004024.htm
|
[7] |
FEINENDEGEN M, ZIEGLER M, SPAGNOLI G, et al. A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with EPB-shields[C]// ISRM EUROCK. Lausanne, Switzerland: ISRM, 2010.
|
[8] |
SPAGNOLIG. Electro-chemo-mechanical Manipulations of Clats Regarding the Clogging During EPB-tunnel Driving [D]. Aachen: RWTH Aachen University, 2011.
|
[9] |
BASMENJ A K, GHAFOORI M, CHESHOMI A, et al. Adhesion of clay to metal surface: normal and tangential measurement[J]. Geomechanics and Engineering, 2016, 10(2): 125-135.
|
[10] |
SASS I, BURBAUM U. A method for assessing adhesion of clays to tunneling machines[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(1): 27-34.
|
[11] |
ZUMSTEG R, PUZRIN A M. Stickiness and adhesion of conditioned clay pastes[J]. Tunnelling and Underground Space Technology, 2012, 31: 86-96.
|
[12] |
LIU P F, WANG S Y, SHI Y F, et al. Tangential adhesion strength between clay and steel for various soil softnesses[J]. Journal of Material in Civil Engineering, 2019, 31(5): 0401948.
|
[13] |
WANG S Y, LIU P F, HU Q X, et al. Effect of dispersant on the tangential adhesion strength between clay and metal for EPB shield tunnelling[J]. Tunnelling and Underground Space Technology, 2020, 95: 103144.
|
[14] |
ZIMNIK A R, BAALEN L R V, VERHOEF P N W, et al. The adherence of clay to steel surfaces[C]// ISRM International Symposium. Melbourne, Australia: ISRM, 2000.
|
[15] |
BASMENJ A K, GHAFOORI M, CHESHOMI A, et al. Adhesion of clay to metal surface; Normal and tangential measurement[J]. Geomechanics and Engineering, 2016, 10(2): 125-135.
|
[16] |
袁大军, 毛家骅, 王将, 等. 软岩地层泥水盾构掘进刀盘堵塞现象研究[J]. 中国公路学报, 2022, 35(4): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202204014.htm
YUAN Dajun, MAO Jiahua, WANG Jiang, et al. Study on clogging phenomenon on cutterhead of slurry shield machine tunneling under soft rock[J]. China Journal of Highway and Transport, 2022, 35(4): 177-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202204014.htm
|
[17] |
CHEN Z T, BEZUIJEN A, FANG Y, et al. Experimental study and field validation on soil clogging of EPB shields in completely decomposed granite[J]. Tunnelling and Underground Space Technology, 2022, 120: 104300.
|
[18] |
SPA G. Review of alternative construction methods and feasibility of proposed methods for constructing Attiko Metro Extension of Line 3 to Egaleo Attiko Metro S. A[Z]. Greece: 1995.
|
[19] |
THEWES M, BURGER W. Clogging risks for TBM drives in clay[J]. Tunnels & Tunnelling International. 2005, 36(6): 28-31.
|
[20] |
HOLLMANN F S, THEWES M. Assessment method for clay clogging and disintegration of fines in mechanised tunnelling[J]. Tunnelling and Underground Space Technology, 2013, 37: 96-106.
|
[21] |
THEWES M, HOLLMANN F. Assessment of clay soils and clay-rich rock for clogging of TBMs[J]. Tunnelling and Underground Space Technology, 2016, 57: 122-128.
|
[22] |
KHABBAZI A, GHAFOORI M, AZALI S T, et al. Experimental and laboratory assessment of clogging potential based on adhesion[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 605-616.
|
[23] |
FOUNTAINE E R. Investigations into the mechanism of soil adhesion[J]. Journal of Soil Science, 1954, 5(2): 251-263.
|
[24] |
王凯. 盾构泥饼堵塞风险综合评判方法及防治措施研究[D]. 成都: 西南交通大学, 2021.
WANG Kai. Research on Comprehensive Evaluation Method for the Risk of Clay Clogging and Prevention Measures[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
|
[25] |
陶力铭. 盾构刀盘-土壤界面黏附机理试验研究[D]. 成都: 西南交通大学, 2020.
TAO Liming. Experimental Study on the Adhesion Mechanism of Shield Cutterhead-Soil Interface[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
|
[26] |
竺维彬, 鞠世健. 盾构施工泥饼(次生岩块)的成因及对策[J]. 地下工程与隧道, 2003(2): 25-29, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC200302005.htm
ZHU Weibin, JU Shijian. Causes and Countermeasures of mud cake (secondary rock block) in shield construction[J]. Underground Engineering and Tunnels, 2003(2): 25-29, 48 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC200302005.htm
|
[27] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Test Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[28] |
王树英, 刘朋飞, 胡钦鑫, 等. 盾构隧道渣土改良理论与技术研究综述[J]. 中国公路学报, 2020, 33(5): 8-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005002.htm
WANG Shuying, LIU Pengfei, HU Qinxin, et al. State-of-the-art on theories and technologies of soil conditioning for shield tunneling[J]. China Journal of Highway and Transport, 2020, 33(5): 8-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005002.htm
|
[29] |
刘朋飞, 王树英, 阳军生, 等. 渣土改良剂对黏土液塑限影响及机理分析[J]. 哈尔滨工业大学学报, 2018, 50(6): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806013.htm
LIU Pengfei, WANG Shuying, YANG Junsheng, et al. Effect of soil conditioner on Atterberg limits of clays and its mechanism[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 91-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806013.htm
|
[1] | LIU Weizheng, HUANG Xuanjia, XU Yang, LI Huili, WAN Jiale. Accumulative deformation law and control of compacted lateritic soil under coupled action of wetting and dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 535-547. DOI: 10.11779/CJGE20231281 |
[2] | ZHANG Xinrui, KONG Gangqiang, YANG Qing. Influences of temperature stress path on strength characteristics of undisturbed marine sediments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 357-365. DOI: 10.11779/CJGE20221308 |
[3] | Mechanical behavior and constitutive modelling of expansive soil under conditions of wetting and low confining stress[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240079 |
[4] | ZHANG Zhen-hua, WANG Ye. Degradation mechanism of shear strength and compressive strength of red sandstone in drawdown areas during reservoir operation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1217-1226. DOI: 10.11779/CJGE201907005 |
[5] | ZHU Jun-gao, Mohamed A. ALsakran, GONG Xuan, XUANG Xiang-yang, JI En-yue. Triaxial tests on wetting deformation behavior of a slate rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 170-174. |
[6] | SHI Weicheng, ZHU Jungao, LIU Hanlong. Influence of intermediate principal stress on deformation and strength of gravel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1449-1453. |
[7] | YANG Heping, ZHANG Rui, ZHENG Jianlong. Variation of deformation and strength of expansive soil during cyclic wetting and drying under loading condition[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1936-1941. |
[8] | Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100. |
[9] | Chen Zhenghan. Deformation,strength,yield and moisture change of a remolded unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 85-93. |
[10] | You Mingqing, Hua Anzeng, Li Yushou. A study of triaxial strength and deformation of flawed specimen[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 97-101. |