• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Cun, ZHAO Yi-xin, TU Shi-hao, ZHANG Tong. Numerical simulation of compaction and re-breakage characteristics of coal and rock samples in goaf[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 696-704. DOI: 10.11779/CJGE202004012
Citation: ZHANG Cun, ZHAO Yi-xin, TU Shi-hao, ZHANG Tong. Numerical simulation of compaction and re-breakage characteristics of coal and rock samples in goaf[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 696-704. DOI: 10.11779/CJGE202004012

Numerical simulation of compaction and re-breakage characteristics of coal and rock samples in goaf

More Information
  • Received Date: August 29, 2019
  • Available Online: December 07, 2022
  • During the compaction process of broken coal and rock mass in a caving zone, the re-breakage of the rock and coal affects the compaction stress and pore characteristics of the caving zone. In this study, a discrete element numerical simulation of a broken coal and rock sample (BCRS) based on the bonded particle model is carried out to study the evolution characteristics of stress, strain and breakage during its compaction. The influence of coal-rock combination ratio and structure on the breakage and compaction characteristics of BCRS is analyzed. The stress–strain curve of the BCRS during compaction can be divided into two stages with the maximum vertical strain εm, and the stress models for these stages are given. When the strain exceeds εm, the stress increases linearly, and the slope of the straight line is proportional to the proportion of rock practices in the BCRS. But the proportion of rock practices has little effect on the εm. With the increase of strain, the breaking rate of BCRS increases in an S-shaped manner. When the strain is greater than εm, the coal and rock practices will be basically no longer broken. Under the same coal-rock ratio, the coal-rock combination structure has a great influence on the breaking rate of the BCRS. In the loading process of BCRS, the broken coal practices take precedence over the broken rock ones, and then produce stress relief and filling effect on the surrounding broken rock particles, which greatly reduces the breaking rate of rock samples. Finally, the fitting model for breaking rate-strain of composite BCRS is given, and the strain at the maximum increase speed value of the breaking rate is put forward to quantitatively analyze the influence of coal-rock ratio on the breaking rate.
  • [1]
    王志强, 李鹏飞, 王磊, 等. 再论采场“三带”的划分方法及工程应用[J]. 煤炭学报, 2013, 38(增刊2): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S2006.htm

    WANG Zhi-qiang, LI Peng-fei, WANG Lei, et al. Method of division and engineering use of “three-band” in the stope again[J]. Journal of China Coal Society, 2013, 38(S2): 287-293. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S2006.htm
    [2]
    蒋力帅, 武泉森, 李小裕, 等. 采动应力与采空区压实承载耦合分析方法研究[J]. 煤炭学报, 2017, 42(8): 1951-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201708005.htm

    JIANG Li-shuai, WU Quan-sen, LI Xiao-yu, et al. Numerical simulation on coupling method between mining-induced stress and goaf compression[J]. Journal of China Coal Society, 2017, 42(8): 1951-1959. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201708005.htm
    [3]
    孟召平, 师修昌, 刘珊珊, 等. 废弃煤矿采空区煤层气资源评价模型及应用[J]. 煤炭学报, 2016, 41(3): 537-544. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603003.htm

    MENG Zhao-ping, SHI Xiu-chang, LIU Shan-shan, et al. Evaluation model of CBM resources in abandoned coal mine and its application[J]. Journal of the China Coal Society, 2016, 41(3): 537-544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603003.htm
    [4]
    顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm

    GU Da-zhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 2015, 40(2): 239-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm
    [5]
    程卫民, 张孝强, 王刚, 等. 综放采空区瓦斯与遗煤自燃耦合灾害危险区域重建技术[J]. 煤炭学报, 2016, 41(3): 662-671. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603019.htm

    CHENG Wei-min, ZHANG Xiao-qiang, WANG Gang, et al. Reconstruction technology of gas and coal spontaneous combustion coupled hazard in fully mechanized caving goaf[J]. Journal of China Coal Society, 2016, 41(3): 662-671. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603019.htm
    [6]
    ZHANG C, TU S H, ZHANG L, et al. A methodology for determining the evolution law of gob permeability and its distributions in longwall coal mines[J]. Journal of Geophysics and Engineering, 2016, 13(2): 181-193. doi: 10.1088/1742-2132/13/2/181
    [7]
    朱德福, 屠世浩, 袁永, 等. 破碎岩体压实特性的三维离散元数值计算方法研究[J]. 岩土力学, 2018, 39(3): 1047-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803034.htm

    ZHU De-fu, TU Shi-hao, YUAN Yong, et al. An approach to determine the compaction characteristics of fractured rock by 3D discrete element method[J]. Rock and Soil Mechanics, 2018, 39(3): 1047-1055. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803034.htm
    [8]
    ZHANG C, TU S H, ZHAO Y X. Compaction characteristics of the caving zone in a longwall goaf: a review[J]. Environmental Earth Sciences, 2019, 78(1): 27-46.
    [9]
    梁冰, 汪北方, 姜利国, 等. 浅埋采空区垮落岩体碎胀特性研究[J]. 中国矿业大学学报, 2016, 45(3): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201603008.htm

    LIANG Bing, WANG Bei-fang, JIANG Li-guo, et al. Broken expand properties of caving rock in shallow buried goaf[J]. Journal of China University of Mining and Technology, 2016, 45(3): 475-482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201603008.htm
    [10]
    屠世浩, 张村, 杨冠宇, 等. 采空区渗透率演化规律及卸压开采效果研究[J]. 采矿与安全工程学报, 2016, 33(4): 571-577. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201604001.htm

    TU Shi-hao, ZHANG Cun, YANG Guan-yu, et al. Research on permeability evolution law of goaf and pressure-relief mining effect[J]. Journal of Mining & Safety Engineering, 2016, 33(4): 571-577. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201604001.htm
    [11]
    ZHANG C, TU S H, ZHANG L. Analysis of broken coal permeability evolution under cyclic loading and unloading conditions by the model based on the hertz contact deformation principle[J]. Transport in Porous Media, 2017, 119(3): 739-754.
    [12]
    张振南, 缪协兴, 葛修润. 松散岩块压实破碎规律的试验研究[J]. 岩石力学与工程学报, 2005, 24(3): 451-455. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050300G.htm

    ZHANG Zhen-nan, MIAO Xie-xing, GE Xiu-run. Testing study on compaction breakage of loose rock blocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 451-455. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050300G.htm
    [13]
    张天军, 石涛, 潘红宇, 等. 三维应力下破碎砂岩渗透特性试验研究[J]. 西安科技大学学报, 2018, 38(2): 273-280. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201802016.htm

    ZHANG Tian-jun, SHI Tao, PAN Hong-yu, et al. Permeability test of broken sandstones under the three-dimensional stresses[J]. Journal of Xi'an University of Science and Technology, 2018, 38(2): 273-280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201802016.htm
    [14]
    ZHAO J, YIN L, GUO W. Stress–seepage coupling of cataclastic rock masses based on digital image technologies[J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2355-2372.
    [15]
    付茹, 胡新丽, 周博, 等. 砂土颗粒三维形态的定量表征方法[J]. 岩土力学, 2018, 39(2): 483-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802010.htm

    FU Ru, HU Xin-li, ZHOU Bo, et al. A quantitative characterization method of 3D morphology of sand particles[J]. Rock and Soil Mechanics, 2018, 39(2): 483-490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802010.htm
    [16]
    郁邦永, 陈占清, 戴玉伟, 等. 饱和破碎砂岩压实过程中粒度分布及能量耗散[J]. 采矿与安全工程学报, 2018, 35(1): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201801029.htm

    YU Bang-yong, CHEN Zhan-qing, DAI Yu-wei, et al. Particle size distribution and energy dissipation of saturated crushed sandstone under compaction[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 197-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201801029.htm
    [17]
    薛龙, 王睿, 张建民. 粒状介质三维复杂应力加载离散元数值试验方法[J]. 岩土力学, 2018, 39(12): 4681-4690. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812045.htm

    XUE Long, WANG Rui, ZHANG Jian-min. DEM numerical test method for granular matter under complex 3D loading[J]. Rock and Soil Mechanics, 2018, 39(12): 4681-4690. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812045.htm
    [18]
    李杨, 佘成学. 堆石料单粒强度尺寸效应的颗粒流模拟方法研究[J]. 岩土力学, 2018, 39(8): 2951-2959. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808030.htm

    LI Yang, SHE Cheng-Xue. Numerical simulation of effect of size on crushing strength of rockfill grains using particle flow code[J]. Rock and Soil Mechanics, 2018, 39(8): 2951-2959. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808030.htm
    [19]
    徐琨, 周伟, 马刚, 等. 基于离散元法的颗粒破碎模拟研究进展[J]. 岩土工程学报, 2018, 40(5): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm

    XU Kui, ZHOU Wei, MA Gang, et al. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm
    [20]
    蒋中明, 袁涛, 刘德谦, 等. 粗粒土渗透变形特性的细观数值试验研究[J]. 岩土工程学报, 2018, 40(4): 752-758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804026.htm

    JIANG Zhong-ming, YUAN Tao, LIU De-qian, et al. Mesoscopic numerical tests on seepage failure characteristics of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 752-758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804026.htm
    [21]
    张科芬, 张升, 滕继东, 等. 离散元中破碎自组织对颗粒破碎影响研究[J]. 岩土工程学报, 2018, 40(4): 743-751. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804025.htm

    ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, et al. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804025.htm
    [22]
    BAI Q S, TU S H, ZHANG C. DEM investigation of the fracture mechanism of rock disc containing hole (s) and its influence on tensile strength[J]. Theoretical and Applied Fracture Mechanics, 2016, 86: 197-216.
    [23]
    王明立. 煤矸石压缩试验的颗粒流模拟[J]. 岩石力学与工程学报, 2013, 32(7): 1350-1357. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201307008.htm

    WANG Ming-li. Simulation of compression test on gangue by PFC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1350-1357. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201307008.htm
    [24]
    POTYONDY D O. A bonded-particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8): 1329-1364.
    [25]
    YAVUZ H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 193-205.
    [26]
    邹德高, 田继荣, 刘京茂, 等. 堆石料三维形状量化及其对颗粒破碎的影响[J]. 岩土力学, 2018, 39(10): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810003.htm

    ZOU De-gao, TIAN Ji-rong, LIU Jing-mao, et al. Three- dimensional shape of rockfill material and its influence on particle breakage[J]. Rock and Soil Mechanics, 2018, 39(10): 27-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810003.htm
    [27]
    吴二鲁, 朱俊高, 郭万里, 等. 缩尺效应对粗粒料压实密度影响的试验研究[J]. 岩土工程学报, 2019, 41(9): 1767-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909026.htm

    WU Er-lu, ZHU Jun-gao, GUO Wan-li, et al. Experimental study on effect of scaling on compact density of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1767-1772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909026.htm
    [28]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
  • Related Articles

    [1]HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367
    [2]The influence of sand pore structure on air migration during air injected desaturation process[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240890
    [3]WANG Wei, CHEN Chaowei, LIU Shifan, CAO Yajun, DUAN Xuelei, NIE Wenjun. Experimental study on permeability and effective porosity of anisotropic layered phyllite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 445-451. DOI: 10.11779/CJGE20230184
    [4]QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. DOI: 10.11779/CJGE20220112
    [5]LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032
    [6]LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001
    [7]ZHANG Ning, ZHU Wei, MIN Fan-lu, XU Jing-bo. Microscopic pores of filter membranes and permeability during chamber opening under high pressure in slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 495-500. DOI: 10.11779/CJGE201703013
    [8]KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018
    [9]YAN Xiao-qing, FANG Ying-guang, ZHANG Ping. Experiment study on the effects of bentonite on the micropore structure characteristics of soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1302-1307.
    [10]Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1703-1708.
  • Cited by

    Periodical cited type(16)

    1. 蒋明杰,石竣允,栗书亚,胡荣峰,梅国雄. 级配对粗粒土-格栅界面循环剪切特性影响试验研究. 水利水电技术(中英文). 2024(03): 162-172 .
    2. 褚福永,朱俊高,许凯,翁厚洋. 基于连续级配方程的粗粒料压实密度缩尺效应试验研究. 水利水电科技进展. 2024(03): 34-38 .
    3. 谢康,陈晓斌,肖宪普,李泰灃,张千里,尧俊凯. 高速铁路路基填料智能振动压实系统研制与试验研究. 铁道学报. 2024(06): 138-147 .
    4. 赵桂锋,蒋明杰,张振,王天成,梅国雄. 粗粒土缩尺级配的渗透系数规律试验. 工程科学与技术. 2024(05): 240-246 .
    5. 蒋明杰,朱俊高,张小勇,梅国雄,赵辰洋. 缩尺效应对粗颗粒土静止侧压力系数影响规律试验. 工程科学与技术. 2023(02): 259-266 .
    6. 蒋明杰,吉恩跃,王天成,栗书亚,朱俊高,梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究. 岩土工程学报. 2023(04): 855-861 . 本站查看
    7. 谢康,陈晓斌,尧俊凯,蔡德钩. 高铁路基填料振动压实试验参数标准化方法与应用研究. 岩石力学与工程学报. 2023(07): 1799-1810 .
    8. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 .
    9. 杨孝攀,李江,杨玉生,齐吉琳,李康达. 典型工程筑坝砂砾料级配特征与压实特性研究. 岩土力学. 2022(06): 1607-1616 .
    10. 梁传扬,吴跃东,刘坚,刘辉,陈大硕,林来贺. 钙质结核含量对钙质结核土压缩性缩尺效应影响研究. 岩土工程学报. 2022(12): 2272-2279 . 本站查看
    11. 罗奇志,袁朝阳,韩雪刚,罗彪. 土石混填体缩尺效应研究现状与发展趋势. 市政技术. 2021(08): 198-201 .
    12. 朱智勇,张丹瑜,寿平山,黄曼,朱申良,张益辉. 不同颗粒粒径的松散沉积物抗剪强度试验研究. 科技通报. 2021(12): 76-82 .
    13. 张村,赵毅鑫,屠世浩,张通. 采空区破碎煤岩样压实再次破碎特征的数值模拟研究. 岩土工程学报. 2020(04): 696-704 . 本站查看
    14. 吴二鲁,朱俊高,陈鸽,包孟碟,郭万里. 粗粒料的级配方程及其适用性研究(英文). Journal of Central South University. 2020(03): 911-919 .
    15. 崔家全,段军邦,马凌云,张路. 茨哈峡水电站砂砾石填筑料水平渗透变形特性试验研究. 西北水电. 2020(S2): 103-107 .
    16. 张村,赵毅鑫,屠世浩,郝宪杰,郝定溢,刘金保,任赵鹏. 颗粒粒径对采空区破碎煤体压实破碎特征影响机制. 煤炭学报. 2020(S2): 660-670 .

    Other cited types(12)

Catalog

    Article views PDF downloads Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return