• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Wei, CHEN Chaowei, LIU Shifan, CAO Yajun, DUAN Xuelei, NIE Wenjun. Experimental study on permeability and effective porosity of anisotropic layered phyllite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 445-451. DOI: 10.11779/CJGE20230184
Citation: WANG Wei, CHEN Chaowei, LIU Shifan, CAO Yajun, DUAN Xuelei, NIE Wenjun. Experimental study on permeability and effective porosity of anisotropic layered phyllite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 445-451. DOI: 10.11779/CJGE20230184

Experimental study on permeability and effective porosity of anisotropic layered phyllite

More Information
  • Received Date: March 02, 2023
  • Available Online: September 21, 2023
  • The experiments on gas permeability and effective porosity of layered phyllite specimens are conducted by using a rock automatic triaxial servo and gas permeability panel. Two stress paths of conventional triaxial compression and confining pressure cyclic loading and unloading are set up in the experiments. The evolution rules of gas permeability and effective porosity with bedding dip angle and deviatoric stress are studied, respectively. The results show that under the same confining pressure, the initial gas permeability k0 changes in a "W" shape with the increase of the bedding angle β, and reaches the maximum value at β=45°. During the confining pressure cyclic loading-unloading process, the gas permeability decreases with the loading of the confining pressure, then increases while unloading. The gas permeability detected during unloading is smaller than that during loading. An exponential relationship is observed between the effective porosity and the gas permeability of the layered phyllite. The gas permeability parallel to the bedding direction is much greater than that perpendicular to the bedding direction. The variation of the effective porosity and gas permeability with deviatoric stress undergoes initial consolidation stage linear elastic stage, and plastic deformation stage. With the increase of the deviatoric stress, the effective porosity and gas permeability of rock specimens decrease first, then keep stable, and finally increase rapidly, and reach the maximum when the slope of stress-strain curve is close to zero.
  • [1]
    段淑蕾, 李波波, 成巧耘, 等. 应力作用下含水煤岩渗透率及水膜动态演化机制[J]. 煤炭科学技术, 2023, 51(6): 91-100.

    DUAN Shulei, LI Bobo, CHENG Qiaoyun, et al. Dynamic evolution mechanism of water-bearing coal permeability and water film under stress[J]. Coal Science and Technology, 2023, 51(6): 91-100. (in Chinese)
    [2]
    付佳乐, 李波波, 高政, 等. 不同孔隙压力和围压下煤岩渗透及力学特性试验研究[J]. 煤炭科学技术, 2023, 51(8): 150-159.

    FU Jiale, LI Bobo, GAO Zheng, et al. Experimental study on permeability and mechanical properties of coal under different pore pressure and confining pressure[J]. Coal Science and Technology, 2023, 51(8): 150-159. (in Chinese)
    [3]
    蒋长宝, 余塘, 魏文辉, 等. 加卸载应力作用下煤岩渗透率演化模型研究[J]. 岩土力学, 2022, 43(增刊1): 13-22.

    JIANG Changbao, YU Tang, WEI Wenhui, et al. Permeability evolution model of coal under loading and unloading stresses[J]. Rock and Soil Mechanics, 2022, 43(S1): 13-22. (in Chinese)
    [4]
    蒲钰昕, 赵东, 蔡婷婷, 等. 不同煤岩组合渗透率的影响因素试验研究[J]. 矿业研究与开发, 2021, 41(12): 88-98.

    PU Yuxin, ZHAO Dong, CAI Tingting, et al. Experimental research on influence factors of permeability of different coal-rock combinations[J]. Mining Research and Development, 2021, 41(12): 88-98. (in Chinese)
    [5]
    周凤, 姜永东, 覃超, 等. 应力环境对煤岩吸附变形和渗透率的影响试验研究[J]. 煤矿安全, 2021, 52(10): 19-23, 29.

    ZHOU Feng, JIANG Yongdong, QIN Chao, et al. Experimental study on influence of stress environment on coal-rock adsorption deformation and permeability[J]. Safety in Coal Mines, 2021, 52(10): 19-23, 29. (in Chinese)
    [6]
    纪文栋, 杨春和, 刘伟, 等. 层状盐岩细观孔隙特性试验研究[J]. 岩石力学与工程学报, 2013, 32(10): 2036-2044.

    JI Wendong, YANG Chunhe, LIU Wei, et al. Experimental investigation on meso-pore structure properties of bedded salt rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2036-2044. (in Chinese)
    [7]
    包春燕, 唐春安, 唐世斌, 等. 单轴拉伸作用下层状岩石表面裂纹的形成模式及其机制研究[J]. 岩石力学与工程学报, 2013, 32(3): 474-482.

    BAO Chunyan, TANG Chunan, TANG Shibin, et al. Research on formation mode and mechanism of layered rock surface fractures under uniaxial tension load[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 474-482. (in Chinese)
    [8]
    王伟, 徐卫亚, 王如宾, 等. 低渗透岩石三轴压缩过程中的渗透性研究[J]. 岩石力学与工程学报, 2015, 34(1): 40-47.

    WANG Wei, XU Weiya, WANG Rubin, et al. Permeability of dense rock under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 40-47. (in Chinese)
    [9]
    王伟, 张宽, 曹亚军, 等. 层状千枚岩各向异性力学特性与脆性评价研究[J]. 岩土力学, 2023, 44(4): 975-989.

    WANG Wei, ZHANG Kuan, CAO Yajun, et al. Anisotropic mechanical properties and brittleness evaluation of layered phyllite[J]. Rock and Soil Mechanics, 2023, 44(4): 975-989. (in Chinese)
    [10]
    WANG W, DUAN X L, JIA Y, et al. Damage evolution of sandstone based on acoustic emission under different seepage conditions[J]. European Journal of Environmental and Civil Engineering, 2023, 27(4): 1796-1812. doi: 10.1080/19648189.2022.2098178
    [11]
    WANG W, MEI S Y, CAO Y J, et al. Experimental study on property modification of jointed rocks subjected to chemical corrosion[J]. European Journal of Environmental and Civil Engineering, 2023, 27(6): 2313-2324. doi: 10.1080/19648189.2020.1752808
    [12]
    王环玲, 徐卫亚, 左婧, 等. 低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J]. 水利学报, 2015, 46(2): 208-216.

    WANG Huanling, XU Weiya, ZUO Jing, et al. Evolution law of the permeability and porosity for low-permeability rock based on gas permeability test[J]. Journal of Hydraulic Engineering, 2015, 46(2): 208-216. (in Chinese)
    [13]
    王环玲, 徐卫亚, 巢志明, 等. 致密岩石气体渗流滑脱效应试验研究[J]. 岩土工程学报, 2016, 38(5): 777-785. doi: 10.11779/CJGE201605002

    WANG Huanling, XU Weiya, CHAO Zhiming, et al. Experimental study on slippage effects of gas flow in compact rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 777-785. (in Chinese) doi: 10.11779/CJGE201605002
    [14]
    孔茜, 王环玲, 徐卫亚. 循环加卸载作用下砂岩孔隙度与渗透率演化规律试验研究[J]. 岩土工程学报, 2015, 37(10): 1893-1900. doi: 10.11779/CJGE201510018

    KONG Qian, WANG Huanling, XU Weiya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. (in Chinese) doi: 10.11779/CJGE201510018
    [15]
    刘小刚, 张艺山, 于志方. 基于FLAC3D的层状岩石强度特征研究[J]. 矿冶工程, 2018, 38(6): 39-43, 47.

    LIU Xiaogang, ZHANG Yishan, YU Zhifang. Probe into strength characteristics of layered rock based on FLAC3D[J]. Mining and Metallurgical Engineering, 2018, 38(6): 39-43, 47. (in Chinese)
    [16]
    李军, 张杨, 胡大伟, 等. 花岗岩三轴循环加卸载条件下的气体渗透率[J]. 岩土力学, 2019, 40(2): 693-700.

    LI Jun, ZHANG Yang, HU Dawei, et al. Gas permeability of granite in triaxial cyclic loading/unloading tests[J]. Rock and Soil Mechanics, 2019, 40(2): 693-700. (in Chinese)
    [17]
    王俊光, 孙清林, 梁冰, 等. 渗透压循环加卸载作用下页岩渗透率演化规律研究[J]. 振动与冲击, 2021, 40(7): 253-259.

    WANG Junguang, SUN Qinglin, LIANG Bing, et al. Permeability evolution law of shale under cyclic loading and unloading of osmotic pressure[J]. Journal of Vibration and Shock, 2021, 40(7): 253-259. (in Chinese)
    [18]
    王欣. 致密岩石渗透特性的气渗试验研究[D]. 南京: 河海大学, 2013.

    WANG X. Experimental Study on Permeability of Tight Rock by Gas Permeation[D]. Nanjing: Hohai University, 2013. (in Chinese)
    [19]
    DOOLIN D M, MAULDON M. Fracture permeability normal to bedding in layered rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2): 199-210. doi: 10.1016/S1365-1609(00)00056-3
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return