• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Jian, CAI Guo-qing, YIN Zhen-yu. Modified cutting-plane integration scheme for elasto-viscoplastic models[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 253-259. DOI: 10.11779/CJGE202002006
Citation: LI Jian, CAI Guo-qing, YIN Zhen-yu. Modified cutting-plane integration scheme for elasto-viscoplastic models[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 253-259. DOI: 10.11779/CJGE202002006

Modified cutting-plane integration scheme for elasto-viscoplastic models

More Information
  • Received Date: July 06, 2019
  • Available Online: December 07, 2022
  • The elasto-viscoplastic model can be regarded as a combination of the modified Cam-clay model and the overstress theory. Firstly, the stress-strain formulas for the model are rearranged, in which an evolution equation for the hardening parameter of dynamic loading surface is deduced based on the overstress theory. Secondly, the rearranged stress-strain formulas are numerically implemented by the cutting-plane integration scheme. In an elastic prediction process, the viscoplastic strain rate is assumed to be constant, which guarantees the deviation of the current stress state from dynamic loading surface due to time increments. In a plastic corrector process, a Taylor series approximation of the dynamic loading function is used to obtain the increment of viscoplastic multiplier rate. Thirdly, an adaptive substepping method is proposed to maintain the accuracy and convergence of the proposed algorithm at a large loading step. Finally, the performances of the modified cutting-plane algorithm are analyzed by the calculated results of step-changed oedometer tests and undrained triaxial tests.
  • [1]
    YIN Z Y, ZHU Q Y, YIN J H, et al. Stress relaxation coefficient and formulation for soft soils[J]. Géotechnique Letters, 2014, 4(1): 45-51. doi: 10.1680/geolett.13.00070
    [2]
    YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 0414162.
    [3]
    尹振宇, 朱启银, 朱俊高. 软黏土蠕变特性试验研究:回顾与发展[J]. 岩土力学, 2013, 24(增刊2): 1-17.

    YIN Zhen-yu, ZHU Qi-yin, ZHU Jun-gao. Experimental investigation on creep behavior of soft clays: Review and development[J]. Rock and Soil Mechanics, 2013, 24(S2): 1-17. (in Chinese)
    [4]
    韩剑, 姚仰平, 尹振宇. 超固结度对超固结饱和黏土不排水蠕变特性的影响研究[J]. 岩土工程学报, 2018, 40(3): 426-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803007.htm

    HAN Jian, YAO Yang-ping, YIN Zhen-yu. Influences of overconsolidation ratio on undrained creep behavior of overconsolidated saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 426-430. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803007.htm
    [5]
    YIN Z Y, CHANG C S, KARSTUNEN M, et al. An anisotropic elastic-viscoplastic model for soft clays[J]. International Journal of Solids and Structures, 2010, 47(5): 665-677. doi: 10.1016/j.ijsolstr.2009.11.004
    [6]
    YIN Z Y, KARSTUNEN M, CHANG C S, et al. Modeling time-dependent behavior of soft sensitive clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 1103-1113. doi: 10.1061/(ASCE)GT.1943-5606.0000527
    [7]
    殷建华. 等效时间和岩土材料的弹黏塑性模型[J]. 岩石力学与工程学报, 1999, 18(2): 124-128.

    YIN Jian-hua. Equivalent time and elastic visco-plastic modelling of geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 124-128. (in Chinese)
    [8]
    王立忠, 但汉波. K0固结软黏土的弹黏塑性本构模型[J]. 岩土工程学报, 2007, 29(9): 1344-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709011.htm

    WANG Li-zhong, DAN Han-bo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709011.htm
    [9]
    李兴照, 黄茂松, 王录民. 流变性软黏土的弹黏塑性边界面本构模型[J]. 岩石力学与工程学报, 2007, 26(7): 1393-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707012.htm

    LI Xing-zhao, HUANG Mao-song, WANG Lu-min. Bounding surface elasto-viscoplastic constitutive model for rheological behaviors of soft clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1393-1401. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707012.htm
    [10]
    尹振宇. 天然软黏土的弹黏塑性本构模型:进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109011.htm

    YIN Zhen-yu, Elastic viscoplastic models for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109011.htm
    [11]
    孔令明, 罗汀, 姚仰平. 率相关本构模型的临界状态描述[J]. 岩土力学, 2015, 36(9): 2442-2450. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509003.htm

    KONG Ling-ming, LUO Ting, YAO Yang-ping. Description of critical state for rate-dependent constitutive models[J]. Rock and Soil Mechanics, 2015, 36(9): 2442-2450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509003.htm
    [12]
    ORTIZ M, SIMO J C. An analysis of a new class of integration algorithms for elastoplastic constitutive relations[J]. International Journal for Numerical Methods in Engineering, 1986, 23(3): 353-366.
    [13]
    PERZYNA P. Fundamental problems in viscoplasticity[J]. Advances in Applied Mechanics, 1966, 9: 243-377.
    [14]
    KATONA M G. Evaluation of viscoplastic cap model[J]. Journal of Geotechnical Engineering, 1984, 110(8): 1106-1125.
    [15]
    BORJA R I. Cam-clay plasticity: part II implicit integration of constitutive equation based on a nonlinear elastic stress predictor[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 88: 225-240.
    [16]
    STOLLE D F E, VERMEER P A, BONNIER P G. Time integration of a constitutive law for soft clays[J]. Communications in Numerical Methods in Engineering, 1999, 15(8): 603-609.
    [17]
    HIGGINS W, CHAKRABORTY T, BASU D. A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(15): 2590-2610.
    [18]
    YIN Z Y, LI J, JIN Y F, et al. Estimation of robustness of time integration algorithms for elasto-viscoplastic modeling of soils[J]. International Journal of Geomechanics, 2019, 19(2): 04018197.
    [19]
    SHENG D, SLOAN S W, GENS A, et al. Finite element formulation and algorithms for unsaturated soils: part I theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(9): 745-765.
    [20]
    WANG W, DATCHEVA M, SCHANZ T, et al. A sub-stepping approach for elastoplasticity with rotational hardening[J]. Computational Mechanics, 2006, 37(3): 266-278.
    [21]
    SLOAN S W. Substepping schemes for the numerical integration of elastoplastic stress-strain relations[J]. International Journal for Numerical Methods in Engineering, 1987, 24(5): 893-911.
  • Related Articles

    [1]JIA Heyang, LI Xiaolong, CAO Dongdong, WANG Shanshan, GUI Yunxiang, ZHONG Yanhui, ZHANG Bei. Experimental study on influences of temperature on diffusion behaviors of self-expanding polymer slurry in fractures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 794-802. DOI: 10.11779/CJGE20221530
    [2]YE Fei, LI Sihan, XIA Tianhan, SU Enjie, HAN Xingbo, ZHANG Caifei. Compaction-fracture diffusion model for backfill grouting of shield tunnels in low permeability strata[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2014-2022. DOI: 10.11779/CJGE20220812
    [3]FENG Shi-jin, PENG Ming-qing, CHEN Zhang-long, CHEN Hong-xin. One-dimensional transport of transient diffusion-advection of organic contaminant through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 799-809. DOI: 10.11779/CJGE202205002
    [4]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [5]LENG Wu-ming, AI Xi, XU Fang, ZHANG Qi-shu, YANG Qi, NIE Ru-song, LIU Xiao-hao. Diffusion laws of horizontal additional stress in a new prestressed subgrade[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1445-1454. DOI: 10.11779/CJGE201908008
    [6]ZHANG Cong, LIANG Jin-wei, YANG Jun-sheng, ZHANG Gui-jin, XIE Yi-peng, YE Xin-tian. Diffusion mechanism of pulsating seepage grouting slurry with power-law fluid considering interval distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2120-2128. DOI: 10.11779/CJGE201811019
    [7]ZHANG Qing-song, WANG Hong-bo, LIU Ren-tai, LI Shu-cai, ZHANG Le-wen, ZHU Guang-xuan, ZHANG Lian-zheng. Infiltration grouting mechanism of porous media considering diffusion paths of grout[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 918-924. DOI: 10.11779/CJGE201805017
    [8]ZHU Ming-ting, ZHANG Qing-song, LI Shu-cai, ZHANG Xiao, TAN Ying-hua, WANG Kai. Effects of properties of surrounding rock on change laws of grouting pressures and diffusion patterns[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1258-1266. DOI: 10.11779/CJGE201707012
    [9]LI Song-ying, LUO Ping-ping. Diffusion law of grouts in irregular faults based on fractal interpolation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 126-131. DOI: 10.11779/CJGE201401011
    [10]ZHANG Zhong-miao, ZOU Jian, HE Jing-yi, WANG Hua-qiang. Laboratory tests on compaction grouting and fracture grouting of clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1818-1824.
  • Cited by

    Periodical cited type(12)

    1. 丁龙. 基于桩侧注浆的桥梁桩基加固研究. 建筑机械. 2024(04): 182-185 .
    2. 曹洋,刘杨,张超宇,杨俊杰,李国政. 基于离散元法的盾尾同步注浆扩散及参数优化研究. 岩土工程学报. 2024(10): 2119-2128 . 本站查看
    3. 柳昭星. 奥陶系灰岩顶部劈裂注浆裂隙起裂机制试验研究. 采矿与安全工程学报. 2023(01): 204-214 .
    4. 王伟,李召峰,许彬,王凯,林春金,都君琪,王衍升. 桩侧注浆提升既有桩基承载特性试验与数值模拟. 科学技术与工程. 2023(21): 9226-9232 .
    5. 庞浩然,高艳华,徐兴芃,熊楚明. 粉细砂地层注浆加固技术的研究进展. 地基处理. 2023(05): 421-433 .
    6. 吴民晖. 压密注浆法在机场杂填土地基施工中的运用. 工程技术研究. 2022(15): 82-84 .
    7. 龚昕,赵程,吴悦. 黏土中考虑中主应力和卸荷效应的压密注浆模型研究. 施工技术(中英文). 2022(20): 45-51 .
    8. 林泽耿,侯振坤,张树文,黎剑华,徐晓斌,李祥新,王晓伟. 桩侧注浆结石体定量表征物理模拟试验. 科学技术与工程. 2021(06): 2427-2432 .
    9. 叶新宇,彭锐,马新岩,张升,王善勇. 压密效应对新型压密注浆土钉的强化研究. 岩土工程学报. 2021(09): 1649-1656+1738 . 本站查看
    10. 董敏忠. 注浆纠偏隧道水平位移的数值模拟. 建筑科学与工程学报. 2021(06): 138-146 .
    11. 徐飞,陈阳. 基于分维数的三维单裂隙注浆体流动数值模拟研究. 黄金. 2019(09): 37-41 .
    12. 秦鹏飞. 劈裂注浆技术研究新进展述评. 地基处理. 2019(02): 17-22 .

    Other cited types(21)

Catalog

    Article views (352) PDF downloads (189) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return