• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Zheng-fa, ZHU He-hua, YAN Zhi-guo. Experimental study on soil-water characteristics and micromechanism of Shanghai soft clay after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1914-1920. DOI: 10.11779/CJGE201910016
Citation: CHEN Zheng-fa, ZHU He-hua, YAN Zhi-guo. Experimental study on soil-water characteristics and micromechanism of Shanghai soft clay after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1914-1920. DOI: 10.11779/CJGE201910016

Experimental study on soil-water characteristics and micromechanism of Shanghai soft clay after high temperatures

More Information
  • Received Date: September 10, 2018
  • Published Date: October 24, 2019
  • The soil-water characteristic curve (SWCC) is the main constitutive relation to reveal the properties of unsaturated soils. However, few researches on soil-water characteristics of unsaturated soils in high-temperature environment, especially over 100˚C, have been reported. The SWCC of soft clay from Shanghai at high temperature is investigated using the vapor phase technique. Different temperatures (20˚C, 105˚C, 150˚C and 200˚C) are adopted to dry the soft clay for 4 h before testing the SWCC. In addition, the microstructures of soft clay before and after high temperature are characterized by scanning electron microscopy (SEM). The results show that the SWCC of soft clay decreases gradually as temperature increases to >100˚C. Similarly, the water-retaining capacity, suction force and intake value of soft clay decrease with the increase of temperature. These results are mainly attributed to the variation of the microstructure of soft clay according to the SEM results. The number of pores of soils decreases, while the pore size of a small number of pores increases at high temperature, which accounts for the variation mechanism of SWCC of soft clay at high temperature. In a word, the change of pore number and pore structure with the increase of temperature is the fundamental reason for the change of water characteristics of soft clay with the increase of temperature.
  • [1]
    GARDENER W R.Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water-table[J]. Soil Science, 1958, 85(4): 228-232.
    [2]
    BROOKS R H, COREY A T.Hydraulic properties of porous medium-hydrology paper[R]. Fort Collins: Colorado State University, 1964.
    [3]
    MCKEE C R, BUMB A C.The importance of unsaturated flow parameters in designing a monitoring system for a hazardous wastes and environmental emergencies[C]// Proceeding of Hazardous Materials Control Research Institute National Conference. Houston, 1984: 50-58.
    [4]
    MCKEE C R, BUMB A C.Flow-testing coalbed methane production wells in the presence of water and gas[J]. SPE Formation Evaluation, 1987, 2(4): 599-608.
    [5]
    BUMB A C.Unsteady-state flow of methane and water in coalbeds[D]. Laramie: University of Wyoming, 1987.
    [6]
    WILLIAMS J, PREBBLE R E, WILLIAMS W T, et al.The influence of texture, structure and clay mineralogy on the soil moisture characteristic[J]. Australian Journal of Soil Research, 1983, 21(1): 15-32.
    [7]
    Van GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [8]
    PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222-232.
    [9]
    CHAHAL R S.Effect of temperature and trapped air on matric suction[J]. Soil Science, 1965, 100(4): 262-266.
    [10]
    HARIDASAN M, JENSEN R D.Effect of temperature on pressure head-water content relationship and conductivity of two soils[J]. Soil Science Society of America Journal, 1972, 36: 703-708.
    [11]
    HOPMANS J W, DANE J H.Temperature dependence of soil water retention curves[J]. Soil Science Society of America Journal, 1986, 50: 562-567.
    [12]
    SHE H Y, SLEEP B E.The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems[J]. Water Resources Research, 1998, 34(10): 2587-2597.
    [13]
    CONSTANTZ J.Comparison of isothermal and isobaric water retention paths in nonswelling porous materials[J]. Water Resources Research, 1991, 27(12): 3165-3170.
    [14]
    BACHMANN J, HORTON R, GRANT S A, et al.Temperature dependence of water retention curves for wettable and water-repellent soils[J]. Soil Science Society of America Journal, 2002, 66: 44-52.
    [15]
    王铁行, 卢靖, 岳彩坤. 考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J]. 岩土力学, 2008, 29(1): 1-5.
    (WANG Tie-xing, LU Jing, YUE Cai-kun.Soil-water characteristic curve for unsaturated loess considering temperature and density effect[J]. Rock and Soil Mechanics, 2008, 29(1): 1-5. (in Chinese))
    [16]
    GRANT S A, SALEHZADEH A.Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions[J]. Water Resources Research, 1996, 32(2): 261-270.
    [17]
    蔡国庆, 赵成刚, 刘艳. 非饱和土土-水特征曲线的温度效应[J]. 岩土力学, 2010, 31(4): 1055-1060.
    (CAI Guo-qing, ZHAO Cheng-gang, LIU Yan.Temperature effects on soil-water characteristic curve of unsaturated soils[J]. Rock and Soil Mechanics, 2010, 31(4): 1055-1060. (in Chinese))
    [18]
    秦冰, 陈正汉, 孙发鑫, 等. 高吸力下持水曲线的温度效应及其吸附热力学模型[J]. 岩土工程学报, 2012, 34(10): 1877-1886.
    (QIN Bing, CHEN Zheng-han, SUN Fa-xin, et al.Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1877-1886. (in Chinese))
    [19]
    GBT 50123—1999 土工试验方法标准[S]. 1999.
    (GBT 50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [20]
    叶为民, 白云, 金麒, 等. 上海软土土水特征的室内试验研究[J]. 岩土工程学报, 2006, 28(2): 260-263.
    (YE Wei-min, BAI Yun, JIN Qi, et al.Lab experimental study on soil-water characteristics of Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 260-263. (in Chinese))
    [21]
    陈正发, 朱合华, 闫治国, 等. 高温后上海软黏土的物理性能试验研究[J]. 岩土工程学报, 2015, 37(5): 924-931.
    (CHEN Zheng-fa, ZHU He-hua, YAN Zhi-guo, et al.Experimental study on physical properties of Shanghai soft clay under high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 924-931. (in Chinese))
    [22]
    ROMERO E, GENS A, LLORET A.Temperature effects on the hydraulic behaviour of an unsaturated clay[J]. Geotechnical and Geological Engineering, 2001, 19(3/4): 311-332.
    [23]
    VILLAR M V, LLORET A.Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science, 2004, 26(1/2/3/4): 337-350.
    [24]
    TANG A M, CUI Y J.Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX-80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296.
    [25]
    FRANCOIS B, LALOUI L. ACMEG-TS, A constitutive model for unsaturated soils under non-isothermal conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(16): 1955-1988.
    [26]
    叶为民, 唐益群, 崔玉军. 室内吸力量测与上海软土土水特征[J]. 岩土工程学报, 2005, 27(3): 347-349.
    (YE Wei-min, TANG Yi-qun, CUI Yu-jun.Measurement of soil suction in laboratory and soil-water characteristics of Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 347-349. (in Chinese))
    [27]
    YE W M, WAN M, CHEN B, et al.Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite[J]. Journal of Central South University of Technology, 2009, 16: 0821-0826.
  • Related Articles

    [1]HAN Zhong, ZHANG Lin, DING Luqiang, ZOU Weilie, FENG Huaiping, YING Zhenqian. Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902
    [2]Soil-water characteristic curve model considering grain size gradation and deformation of soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240339
    [3]LIANG Zhi-chao, ZHANG Ai-jun, REN Wen-yuan, WANG Yu-guo, HU Jin-fang, HAN Jing-wen. Fitting model for soil water characteristics of lime-improved loess and its microscopic properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 241-246. DOI: 10.11779/CJGE2022S1043
    [4]ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021
    [5]CAI Guo-qing, LIU Yi, XU Run-ze, LI Jian, ZHAO Cheng-gang. Experimental investigation for soil-water characteristic curve of red clay in full suction range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 13-16. DOI: 10.11779/CJGE2019S2004
    [6]WANG Sheng-fu, YANG Ping, LIU Guan-rong, FAN Wen-hu. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. DOI: 10.11779/CJGE201607012
    [7]MA Tian-tian, WEI Chang-fu, ZHOU Jia-zuo, TIAN Hui-hui. Freezing characteristic curves and water retention characteristics of soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 172-177. DOI: 10.11779/CJGE2015S1033
    [8]SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020
    [9]YE Weimin, BAI Yun, JIN Qi, CHEN Bao, CUI Yunjun. Lab experimental study on soil-water characteristics of Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 260-263.
    [10]YE Weimin, QIAN Lixin, BAI Yun, CHEN Bao. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 27-30.
  • Cited by

    Periodical cited type(8)

    1. 赵再昆,王铁行,金鑫,张亮. 高温作用下非饱和黄土水热迁移试验研究. 岩土工程学报. 2024(01): 151-161 . 本站查看
    2. 赵再昆,王铁行,张亮,金鑫,鲁洁,阮嘉斌,邢昱. 高温作用下非饱和黄土裂隙演化及其定量分析. 岩土力学. 2024(05): 1297-1308 .
    3. 张路,倪晓逸,樊恒辉,高策,杜宇航. 热力加固对压实黄土工程性质影响的试验研究. 地下空间与工程学报. 2024(S1): 77-83 .
    4. 张潜华. 微波技术在路基软土力学性质修复中的试验研究. 西部交通科技. 2023(01): 75-77 .
    5. 曾召田,崔哲旗,孙德安,姚志,潘斌. 南宁膨胀土持水性能的温度效应及微观机制. 岩土力学. 2023(08): 2177-2185 .
    6. 蒋银强,梁建楠,赵雅贞,段朕,赵昊洋. 微波加热对膨胀土膨胀性影响的试验研究. 南阳理工学院学报. 2023(06): 68-72 .
    7. 蔡国庆,刘祎,徐润泽,李舰,赵成刚. 干化-湿化路径下红黏土微观结构演化规律研究. 中国科学:技术科学. 2021(02): 221-230 .
    8. 程强强,潘世宁,肖蒙恩,何一鸣. 软黏土筛分烘测试验装置研制与应用. 江苏建筑职业技术学院学报. 2019(04): 1-4 .

    Other cited types(10)

Catalog

    Article views (229) PDF downloads (162) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return