• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KUANG Zheng, ZHANG Ming-yi, BAI Xiao-yu, WANG Yong-hong, YAN Nan, ZHU Lei. Field tests on mechanics and deformation properties of GFRP anti-floating anchors in decomposed rock foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1882-1892. DOI: 10.11779/CJGE201910012
Citation: KUANG Zheng, ZHANG Ming-yi, BAI Xiao-yu, WANG Yong-hong, YAN Nan, ZHU Lei. Field tests on mechanics and deformation properties of GFRP anti-floating anchors in decomposed rock foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1882-1892. DOI: 10.11779/CJGE201910012

Field tests on mechanics and deformation properties of GFRP anti-floating anchors in decomposed rock foundation

More Information
  • Received Date: August 27, 2018
  • Published Date: October 24, 2019
  • Through the field pullout destruction tests on 10 GFRP anti-floating anchors using the fiber bragg grating sensing technology, the bearing capacity and deformation properties of the GFRP anti-floating anchors in decomposed rock foundation are investigated. The test results show that the load-displacement difference curve of the anchor body and anchorage body of the GFRP anchors in the slip failure model is higher than that in the rupture failure model. The load-displacement difference curve of the anchor body and anchorage body with the anchorage length which is close to the critical one rises steadily. Increasing the diameter of the anchor body is beneficial for improving the bearing capacity of anchors, limiting the displacement of the anchor body and reducing their displacement difference. Additionally, the distribution of the axial stress on the cross-section of the anchor body, which decreases along the anchorage length, shows a reversed S form along the direction of anchorage length. The shear stress of the axial interface increases firstly and then decreases along the direction of anchorage length, and it transfers from the first interface to the second interface with an oblique upward direction. Finally, the displacement difference of the anchor body and anchorage body, calculated by the simplified model for the distribution of the shear stress, is similar to that of the GFRP anchors in the slip failure model. The research results may provide the theoretical foundation for the application of GFRP anchors.
  • [1]
    OU C Y, HSIEH P G.A simplified method for predicting ground settlement profiles induced by excavation in soft clay[J]. Computers and Geotechnics, 2011, 38(8): 987-997.
    [2]
    MALVAR L J.Tensile and bond properties of GFRP reinforcing bars[J]. Materials Journal, 1995, 92(3): 276-285.
    [3]
    匡政, 白晓宇, 张明义, 等. 考虑锚固体不均匀及杆体脱黏效应的GFRP抗浮锚杆杆体荷载分布函数[J]. 岩石力学与工程学报, 2019, 38(6): 1158-1171.
    (KUANG Zheng, BAI Xiao-yu, ZHANG Ming-yi, et al.Load distribution function of GFRP anti-floating anchors considering the anchorage body unevenness and the anchor debonding effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1158-1171. (in Chinese))
    [4]
    ZHU H H, YIN J H, YEUNG A T, et al.Field pullout testing and performance evaluation of GFRP soil nails[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 137(7): 633-642.
    [5]
    FAVA G, CARVELLI V, PISANI M A.Remarks on bond of GFRP rebars and concrete[J]. Composites Part B: Engineering, 2016, 93: 210-220.
    [6]
    TASTANI S P, PANTAZOPOULOU S J.Bond of GFRP bars in concrete: experimental study and analytical interpretation[J]. Journal of Composites for Construction, 2006, 10(5): 381-391.
    [7]
    BENMOKRANE B, XU H, BELLAVANCE E.Bond strength of cement grouted glass fiber reinforced plastic (GFRP) anchor bolts[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1996, 33(5): 455-465.
    [8]
    尤春安. 全长粘结式锚杆的受力分析[J]. 岩石力学与工程学报, 2000, 19(3): 339-341.
    (YOU Chun-an.Mechanical analysis of fully-grouted anchor[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 339-341. (in Chinese))
    [9]
    MARANAN G B, MANALO A C, KARUNASENA W, et al.Pullout behaviour of GFRP bars with anchor head in geopolymer concrete[J]. Composite Structures, 2015, 132: 1113-1121.
    [10]
    KOU H, GUO W, ZHANG M.Pullout performance of GFRP anti-floating anchor in weathered soil[J]. Tunnelling and Underground Space Technology, 2015, 49: 408-416.
    [11]
    LEE J Y, KIM T Y, KIM T J, et al.Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete[J]. Composites Part B: Engineering, 2008, 39(2): 258-270.
    [12]
    白晓宇, 张明义, 刘鹤, 等. 风化岩地基全螺纹玻璃纤维增强聚合物抗浮锚杆承载特征现场试验[J]. 岩土力学, 2014, 35(9): 2464-2472.
    (BAI Xiao-yu, ZHANG Ming-yi, LIU He, et al.Field test on load-bearing characteristics of full-thread GFRP anti-floating anchor in weather rock site[J]. Rock and Soil Mechanics, 2014, 35(9): 2464-2472. (in Chinese))
    [13]
    LAU K T, YUAN L, ZHOU L M, et al.Strain monitoring in FRP laminates and concrete beams using FBG sensors[J]. Composite Structures, 2001, 51(1): 9-20.
    [14]
    隋海波, 施斌, 张丹, 等. 基于BOTDR 的锚杆拉拔试验研究[J]. 岩土工程学报, 2008, 30(5): 755-759.
    (SUI Hai-bo, SHI Bin, ZHANG Dan, et al.BOTDR-based pull-out tests on anchor bolts[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 755-759. (in Chinese))
    [15]
    LENG J, ASUNDI A.Structural health monitoring of smart composite materials by using EFPI and FBG sensors[J]. Sensors & Actuators A Physical, 2003, 103(3): 330-340.
    [16]
    白晓宇, 张明义, 朱磊, 等. 全长黏结GFRP 抗浮锚杆界面剪切特性试验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1407-1418.
    (BAI Xiao-yu, ZHANG Ming-yi, ZHU Lei, et al.Experimental study on shear characteristics of interface of full-bonding glass fiber reinforced polymer anti-floating anchors[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1407-1418. (in Chinese))
    [17]
    WANG B, ZHOU J N, JIN F N, et al.Study on critical anchorage length of bolts by numerical simulation method[C]// Applied Mechanics and Materials Trans Tech Publications. Sydney, 2012, 204: 4771-4775.
    [18]
    XU D, YIN J.Analysis of excavation induced stress distributions of GFRP anchors in a soil slope using distributed fiber optic sensors[J]. Engineering Geology, 2016, 213: 55-63.
    [19]
    GHALY A, HANNA A.Model investigation of the performance of single anchors and groups of anchors[J]. Canadian Geotechnical Journal, 1994, 31(2): 273-284.
    [20]
    刘桂秋, 施楚贤, 刘一彪. 砌体及砌体材料弹性模量取值的研究[J]. 湖南大学学报(自科版), 2008, 35(4): 29-32.
    (LIU Gui-qiu, SHI Chu-xian, LIU Yi-biao.Analyses of the elastic modulus values of masonry[J]. Journal of Hunan University, 2008, 35(4): 29-32. (in Chinese))
    [21]
    付文光, 柳建国, 杨志银. 抗浮锚杆及锚杆抗浮体系稳定性验算公式研究[J]. 岩土工程学报, 2014, 36(11): 1971-1982.
    (FU Wen-guang, LIU Jian-guo, YANG Zhi-yin.Formulae for calculating stability of anti-floating anchor and anchor anti-floating system[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 1971-1982. (in Chinese))
    [22]
    白晓宇, 张明义, 闫楠. 两种不同材质抗浮锚杆锚固性能的现场对比试验研究与机理分析[J]. 土木工程学报, 2015, 48(8): 38-46.
    (BAI Xiao-yu, ZHANG Ming-yi, YAN Nan, et al.Field contrast test and mechanism analysis on anchorage performance of anti-floating anchors with two different materials[J]. China Civil Engineering Journal, 2015, 48(8): 38-46. (in Chinese))
    [23]
    李国维, 于威, 李峰, 等. 引江济淮软岩钢筋、GFRP筋锚杆承载差异试验[J]. 岩石力学与工程学报, 2018, 37(3): 601-610.
    (LI Guo-wei, YU Wei, LI Feng, et al.Experiment on the difference of load bearing of GFRP and steel bars in soft-rock slopes of water diversion from Yangtze to Huai[J]. Chinese Journal of Rock Mechanics & Engineering, 2018, 37(3): 601-610. (in Chinese))
    [24]
    KIM N K.Performance of tension and compression anchors in weathered soil[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2003, 129(12): 1138-1150.
  • Related Articles

    [1]Study on shear stress - shear strain nonlinear response of wide-graded saturated coral soil site in dynamic centrifugal test[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240908
    [2]Effect of initial static shear stress and cyclic loading direction on the liquefaction behavior of saturated dense sand[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240591
    [3]WANG Ti-qiang, WANG Yong-zhi, CHEN Su, DUAN Xue-feng, YUAN Xiao-ming. Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011
    [4]QI Li-cheng, CHEN Qun, ZHU Ya-jun. sSeepage tests on double-layer soils composed of sandy gravel and sand under different stresses and shear displacements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 63-67. DOI: 10.11779/CJGE2018S2013
    [5]ZHOU Zheng-long, CHEN Guo-xing, WU Qi. Effect of initial static shear stress on liquefaction behavior of saturated silt[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 504-509. DOI: 10.11779/CJGE201603014
    [6]WANG Yong-zhi, Daniel W Wilson, Mohammad Khosravi, YUAN Xiao-ming, C Guney Olgum. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271-277. DOI: 10.11779/CJGE201602010
    [7]YANG Guang-qing, ZHOU Yi-tao, ZHOU Qiao-yong. Distribution rules of axial stress of reinforcement in reinforced earth retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 650-654.
    [8]RUI Rui, XIA Yuan-you, GU Jin-cai, CHEN Chen. Non-uniform shear stress design method for pressure-dispersive anchors[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1262-1270.
    [9]JIANG Zhongxin. A Gauss curve model on shear stress along anchoring section of anchoring rope of extensional force type[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 696-699.
    [10]Lien Kwei Chien, Shan Jin Chang, Yan Nam Oh. Initial shear stress effects on dynamic properties of reclaimed soil in offshore area[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 420-426.
  • Cited by

    Periodical cited type(16)

    1. 任东兴,彭涛,杨宗耀,薛鹏,符文熹,赵晓彦,李佳龙,彭界超. 精轧螺纹钢筋扩大头抗浮锚杆在某工程抗浮中的应用. 建筑结构. 2025(03): 131-138+115 .
    2. 刘军,申精,张建全,宋晔,刘鹏. 中空GFRP筋土钉抗拔性能研究. 岩土工程技术. 2024(01): 78-84 .
    3. 陆振华. 抗浮锚杆技术介绍及工程特性研究. 地基处理. 2024(02): 185-192 .
    4. 白晓宇,吴泽坤,王凤姣,孙淦,张明义,闫楠. BFRP抗浮锚杆抗拔性能现场试验与荷载传递特性. 岩石力学与工程学报. 2024(06): 1335-1346 .
    5. 陈向琳,王超圣,许战波,孙晓刚. 砾石地层中自钻式锚杆锚固特性现场试验与数值仿真. 科学技术与工程. 2024(20): 8655-8662 .
    6. 孙乐光. GFRP筋材与钢筋锚杆拉拔力学特性对比研究. 江西建材. 2024(09): 382-385+401 .
    7. 张根宝,陈昌富,徐长节,陈海军. 基于双界面滑移耦合的水泥土锚杆荷载传递模型. 土木与环境工程学报(中英文). 2023(01): 79-88 .
    8. 白晓宇,苏悦,闫楠,杲晓东,于风波,李伟奇,赵文强,宋波,苑振. 抗浮锚杆受力特性试验研究进展. 科学技术与工程. 2023(15): 6290-6302 .
    9. 刘鹏,刘军,郑仔弟,郑辉,白雪. 基于GFRP筋与钢绞线复合式锚杆支护施工的关键技术研究. 市政技术. 2023(08): 245-252 .
    10. 王凤姣,白晓宇,张云光,井德胜,张明义,王海刚,侯东帅. 不同材质抗浮锚杆与基础底板的黏结强度试验研究. 材料导报. 2023(22): 277-284 .
    11. 白晓宇,井德胜,王海刚,张明义,贾玉跃,闫楠. GFRP抗浮锚杆界面黏结性能现场试验. 岩石力学与工程学报. 2022(04): 748-763 .
    12. 王凤姣,白晓宇,陈吉光,于龙涛,李明,朱磊. 大直径GFRP筋与混凝土黏结性能现场足尺试验研究. 复合材料科学与工程. 2022(10): 33-37 .
    13. 井德胜,白晓宇,刘超,刘永江,张明义,黄永峰. 抗浮锚杆荷载-位移特性及极限承载力预测. 科学技术与工程. 2021(22): 9570-9576 .
    14. 查文华,王京九,华心祝,刘造保,王澄菡. 锚杆锚固性能及界面力学特性研究综述. 人民长江. 2021(11): 161-168 .
    15. 白晓宇,王海刚,张明义,郑晨. 抗浮锚杆承载性能研究进展. 科学技术与工程. 2020(08): 2949-2958 .
    16. 白晓宇,郑晨,张明义,王永洪,王海刚. 大直径GFRP抗浮锚杆蠕变试验及蠕变模型. 岩土工程学报. 2020(07): 1304-1311 . 本站查看

    Other cited types(7)

Catalog

    Article views (247) PDF downloads (143) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return